

Wood Buffalo Environmental Association

ANNUAL REPORT – VOLUME 3

SITE DOCUMENTATION

March 2017

Operation and Maintenance by: Wood Buffalo Environmental Association Fort McMurray, Alberta

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 01 – FORT MCKAY-BERTHA GANTER

Table of Contents

Network Background	3
AMS 01 – Bertha Ganter Station Details	6
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	15
Wind Rose	18

Tables and Figures

Table 1.0 – Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 01 – Fort McKay-Bertha Ganter Station	7
Figure 3.0 – Aerial photo showing AMS 01 – Fort McKay-Bertha Ganter Station	8
Figure 4.0 – Exterior of monitoring station	9
Figure 4.1 – Monitoring compound looking south	9
Figure 4.2 – Sampling Deck	.10
Figure 4.3 - Super SASS enhanced deposition sampling deck	.10
Figure 4.4 – Precipitation Sampling Deck	.11
Figure 4.5 – Continuous Precipitation Monitoring Instrument (Pluvio)	.11
Figure 4.6 – Environ looking north	.12
Figure 4.7 – Environ looking east	.12
Figure 4.8 – Environ looking south	.13
Figure 4.9 – Environ looking west	.13
Figure 4.10 – Outdoor Sample Inlet & Indoor Sample Manifold	.14
Figure 4.11 – East Rack (on the left) & West Rack	.14
Table 4.0 – Analytical Equipment in AMS 01	.15
Table 5.0 – Support Equipment in AMS 01	.17
Figure 5.0 – AMS 01 Five Year Wind Rose	.18
Figure 6.0 – Plan view sketch	.19

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oil Sands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	All	RM	101	IT	OR	ING	i N	ETV	VO	RK														
		WBEA Program	m - X																	Er	nhano	ed D	epos	ition	Prog	gram	- X								_
					(CONT	INUC	DUS I	/ON	ITOR	ED PA	RAN	1ETER	RS															IN	TEGR	ATE	D SAI	MPLI	NG	_
STATION NAME	STATION #	TYPE	SO ₂	H_2S	TRS	03	NO _x	NO	NO ₂	NH ₃	CO	PM _{2.5}	THC	NMHC	CH_4	PAH	BTEX	Calib	WS	WD	vws	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PM ₁₀	PM _{2.5}	VOC	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		Х	Х	Х	Х	Х	X		Х	X	Х	X	X	X	X	X	Х		Х	Х	Х	Х		Χ	Х	X	X	Х	Х	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					Х	Х	Х		Х	Х												
Lower Camp	3	Meteorological																	Х	Х	Х	Х	Х												
Buffalo Viewpoint	4	Compliance	Х	Х									Х					Х	X	Х		Х	X												
Mannix	5	Compliance/Meteorological	Х	Х									Х					Х	Х	Х	Х	Х	Х									X		X	X
Patricia McInnes	6	Health	Х		Х	Х	Х	Х	Х	X		Х	Х	Х	Х			Х	X	Х		Х	X				Х				Х	Х	Х	X	X
Athabasca Valley	7	Health	Х		Х	Х	Х	Х	Х		Х	Х	Х	Х	Х			Х	Х	Х		Х	Х			Х					Х	Х	Х	Х	X
Fort Chipewyan	8	Background/Health	Х			X	Х	Х	Х			Х						Х	Х	Х		Х	Х	Х	Х		Х								
Barge Landing	9	Attribution			Х								Х					Х	Х	Х		Х	Х			Х							Х		
Lower Camp B	11	Compliance	Х	X									Х					Х	Х	Х		Х	Х									X		X	X
Fort McKay South	13	Attribution	Х		Х	X	Х	Х	Х			Х	Х					Х	Х	Х		Х	Х								Х	X	Х	X	X
Anzac	14	Attribution	Х		Х	X	Х	Х	Х			Х	Х	Х	Х			Х	Х	X		Х	X	Х	Х		Х				Х	Х	Х	X	
CNRL - Horizon	15	Compliance	Х		Х		Х	Х	Х			Х	Х					Х	Х	Х		Х	X	Х			Х				Х		Х		
Shell Muskeg River	16	Compliance	Х				Х	Х	Х			Х	Х					X	Х	X		Х	Х			Х					Х				
Wapasu Creek	17	Compliance	Х	Х		X	Х	Х	Х			Х	Х					Х	Х	Х	X	Х	X				Х			X				X	X
Conklin	18	Background	Х		Х	X	Х	Х	Х			Х	Х	Х	X	X		X	Х	X		Х	Х	Х	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	X			Х	Х	Х				Х					Х	Х	Х		Х	X												
Brion Energy	20	Compliance	Х	X			Х	Х	Х				Х					X	Х	X		Х	Х				Х								
Cenovus Christina Lake	500	Portable-Compliance	Х	Х		Х	Х	Х	Х			Х						Х	Х	Х		Х	X												
Stat Oil Leismer	501	Portable-Compliance	Х	Х			Х	Х	Х									Х	Х	Х		Х	Х												
ConocoPhillips Surmont	502	Portable-Compliance	Х	Х			Х	Х	Х									Х	X	Х		Х	X												
HEMP	104	Portable-Health			Х								Х	Х	Х			Х	Х	Х		Х	Х												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

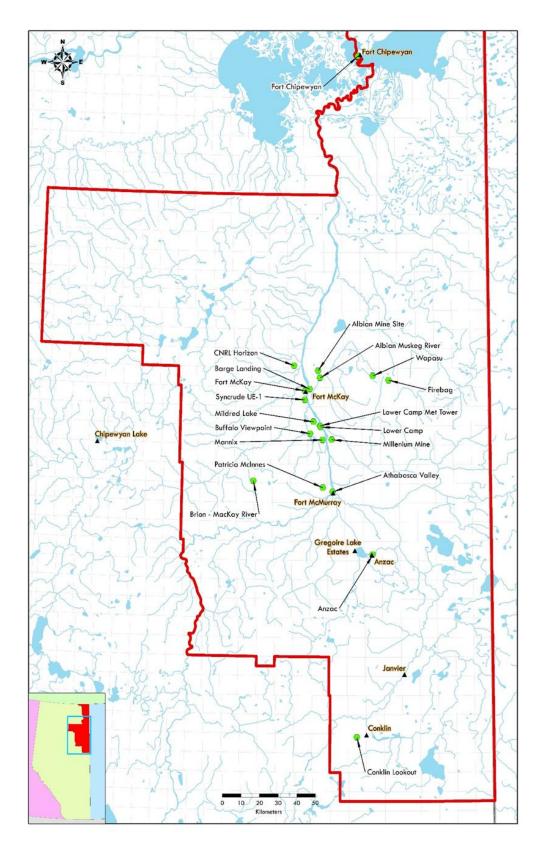


Figure 1.0 - WBEA Monitoring Network Sites

AMS 01 - Bertha Ganter Station Details

General Site Information

The Berta Ganter station was installed in 1997 as a community station to monitor in the region of the settlement of Fort MacKay. It is situated near the northwest corner of the Fort McKay Water Treatment Plant.

Item	Description			
Station ID	AMS 01			
Station Name	Fort McKay-Bertha	Ganter		
General description	Located approxima	ately 200 m northw	est of the Fort McKay W	ater Treatment Plant.
Community	Fort McKay			
Station Coordinates	57°11'21.94"	North	111°38'26.10"	West
Station elevation	270			Meters
Station Address	NA			
Station Type	Health			
Initial Commission Date	NA			
Area Land Use	Residential			
Angle of elevation to nearby buildings	0 degrees			
Average building height in area	NA			
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	10 meters	Height	5 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-up	p tower	
	Position	Attached to No	orth end of monitoring sh	nelter
Station Install Date	December 2007			
Station Origin	Purchased new			
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре		Distan	ce		Description	
Water treatment plant		To the	South approximately 25	0 m		nt plant handles water ent of Fort MacKay
Name	Туре		Traffic Volume	Distan	ce (m)	Description
Roadways	Access road		low	50		Gravel access roads

Table 3.0 – Local Source Information

Area Topographic Map

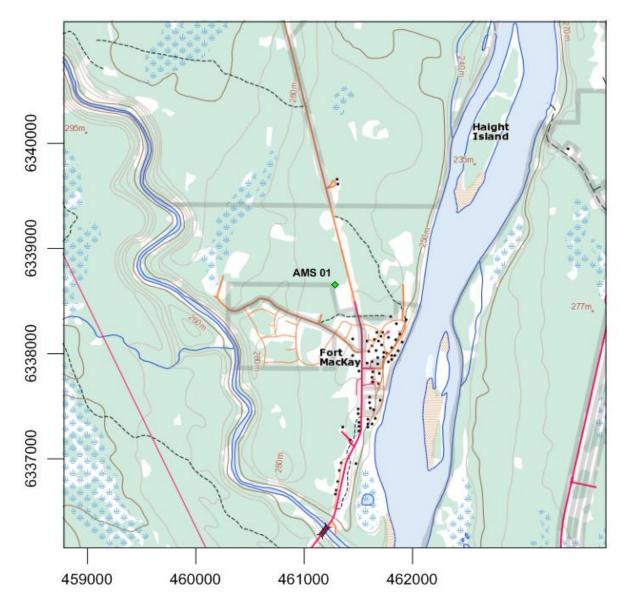


Figure 2.0 – Area Topographic map showing AMS 01 – Fort McKay - Bertha Ganter Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 01 – Fort McKay - Bertha Ganter Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 - Monitoring compound looking south

Figure 4.2 – Sampling Deck

Figure 4.3 Super SASS enhanced deposition sampling deck

Figure 4.4 – Precipitation Sampling Deck

Figure 4.5 – Continuous Precipitation Monitoring Instrument (Pluvio)

Figure 4.6 – Environ looking north

Figure 4.7 – Environ looking east

Figure 4.8 – Environ looking south

Figure 4.9 - Environ looking west

Figure 4.10 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.11 – East Rack (on the left) & West Rack

Equipment Inventory

Daram	eter Measured	Make	Model	Serial Number	Range	Detection Principle	Sampling	Height (m)
Falaili		IVIARE	widdei	Senai Number	Kalige	Detection Principle	Ground	Shelter
SO2	Sulphur Dioxide	Thermo Instruments	43i	JC1501301448	0-1000ppb	Pulsed Fluorescence	4	1
TRS	Total Reduced Sulfur	Thermo Instruments	43i-TLE	1218153461	0-100ppb	Pulsed Fluorescence	4	1
TRS converter	Thermal Oxidizer	CD Nova	CDN 101	470	NA	Thermal Oxidizer paired with 43iTLE for TRS measurement		1
NOx	Nitrogen Dioxide	Thermo Instruments	42i	1218153357	0-1000ppb	Chemiluminescence	4	1
NMHC	Non-Methane Hydrocarbons	Thermo Instruments	55i-LT	1152430012	0-50ppm	Gas Chromatography	4	1
03	Ozone	Thermo Instruments	T400	1107	0-500 ppb	UV Photometric	4	1
NH3	Ammonia	Teledyne API	T201	152	0-2000 ppb	Chemiluminescence	4	1
NH3 Converter	Thermal converter	Teledyne API	T501NH3	147	NA			
PM2.5	PM <2.5 um in diameter.	Thermo Instruments	5030	E-1486	0-1000ug/m3	Synchronized Nephelometric/Radiometric Particulate Mass Monitor	4	1
AT/RH	Ambient temperature	Vaisala	HMP155		AT: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.		
WS	Wind Speed<10um	Met One	010C-1		0-80kph	Chopped optical	10	
WD	Wind Direction	Met One	20C-1		0-360 degrees	Resistive (potentiometer)	10	
LW	Leaf wetness sensor	Decagon Devices	LWS	f				
РС	Pluvio	OTT Pluvio		363524			2	
Precip	Integrated sampling.	N-CON	00-120-2	60192			2	
PM 2.5 A	Particulate Matter <2.5ug/m3.	Thermo Instruments	2000i	200012 0456 1405	NA	Inertial Separator and Cartridge Filter	2	

PM 2.5 B PM 2.5 B PM 2.5 B PM 10 A PM 10 A PM 10 B PArticular (100) Integ samp Particular (100) Integ samp Particular (100) Integ samp Particular (100) Integ samp Particular (100) Integ samp (100) Particular (100) Integ samp (100) Integ (100) Int	grated Instru pling. ate Matter ug/m3. The grated Instru pling. ate Matter ug/m3. The	rmo ments	2000i 2000i 2000i	200012 04871408 200012 0457 1405 200012 04841408	NA NA	Inertial Separator and Cartridge Filter Inertial Separator and Cartridge Filter Inertial Separator and	2	
PM 10 A PM 10 A PM 10 B PM 10 B Particular <10u Integ sam Polyu EC PAH aror hydroo	ug/m3. The grated Instru upling. ate Matter ug/m3. The grated Instru upling.	ments rmo				Cartridge Filter		
PM 10 B Integ samp EC PAH EC PAH aron hydroc Par	ıg/m3. The grated Instru ıpling.		2000i	200012 04841408	NA	Inertial Separator and		
EC PAH aron hydroc Par	/cyclic					Cartridge Filter	2	
	matic Tis carbons	sch Ti	E-1000	1001056	NA	Filter/ canister sampler	2	
	rtisol The grated Instru	rmo ments	2000i	200012 022 1205	NA	Cartridge Filter	2	
PAH aron	rcyclic matic Tis carbons	sch TE-	-1004BL	1616	NA	Filter/ canister sampler	2	
	e Organic pounds	sch T	E-123	1018	NA	Canister sampling	2	
		One S	S/SASS	P15905	NA			
Dicot	The Instru	rmo 2 ments	00DI2	1101102	NA	Inertial Separator and Cartridge Filter	2	
Dicot	The Instru	rmo 2 ments	00DI2	1161103	NA	Inertial Separator and Cartridge Filter	2	

Table 4.0 - Analytical Equipment in AMS 01

Name	Description	Make	Model	Serial Number
Datalogger	CR3000	Campbell Scientific	CR3000	9036
ZAG	Zero Air Generator	Teledyne API	T701	587
HVAC	Air Conditioner/Heater .Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring trailer	ITB	NA	NA
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Thermo Instruments	SABIO 4010	1730512
Datalogger	CR1000	Campbell Scientific	CR1000	62004

Table 5.0 - Support Equipment in AMS 01

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2012-2016

Wind Speed (WS) - km/h Fort McKay - Bertha Ganter (AMS 1)

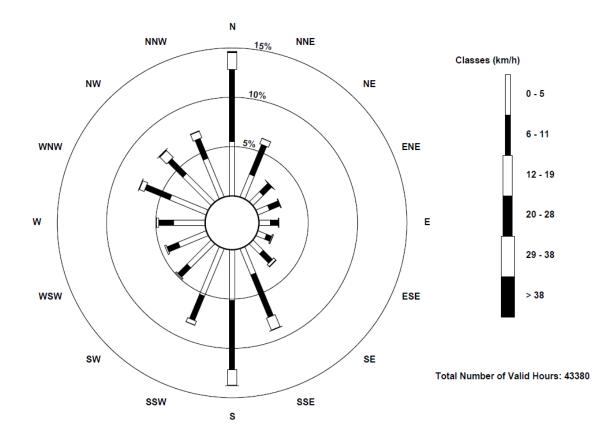


Figure 5.0 – AMS 01 Five Year Wind Rose

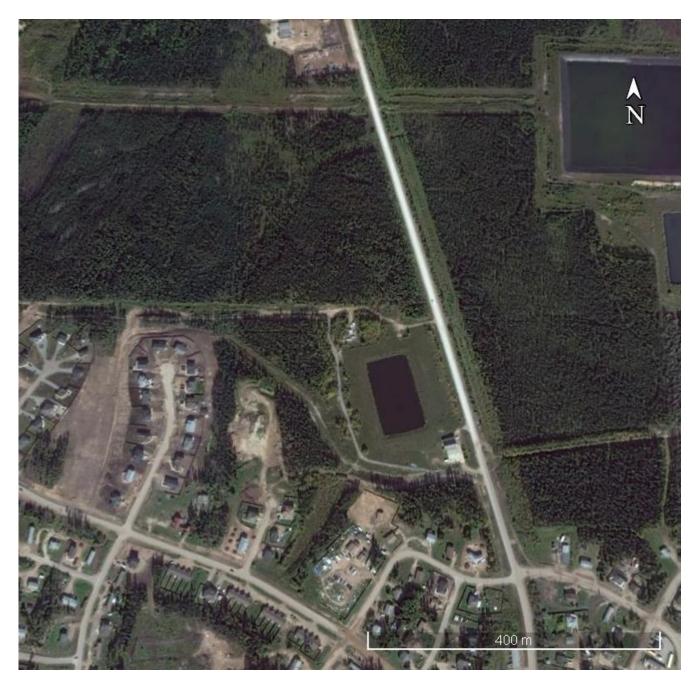


Figure 6.0 – Plan view sketch showing a 500m radius around Bertha Ganter – Fort McKay station.

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 02 – Mildred Lake

Table of Contents

Network Background	3
AMS 02 – Mildred Lake Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	14

Tables and Figures

Fable 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
-igure 1.0 – WBEA Monitoring Network Sites	5
Fable 2.0 – General Site Information	6
Fable 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 02 – Mildred Lake Station	7
-igure 3.0 – Aerial photo showing AMS 02 – Mildred Lake Station	8
-igure 4.0 – Exterior of monitoring station	9
-igure 4.1 – Monitoring compound looking south	
-igure 4.2 – Environ looking north	
Figure 4.3 – Environ looking east	10
-igure 4.4 – Environ looking south	11
-igure 4.5 –Environ looking west	11
-igure 4.6 – Outdoor Sample Inlet and Indoor manifold setup	12
-igure 4.7 – Instrument rack	12
Гаble 4.0 - Analytical Equipment in AMS 02	13
Гable 5.0 - Support Equipment in AMS 02	13
Figure 5.0 – AMS 02 Five Year Wind Rose	14
-igure 6.0 – Plan View Sketch	15

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	AI	RM	O	NIT(ÓR	INC	δN	ETV	NŌ	RK					_		_							
		WBEA Program	n - X																	Er	nhand	ed D	epos	ition	Prog	gram	- X								
					(CONT	INUC)US N	/ION	TOR	ED P A	RAN	IETER	S															IN	TEGR	RATE	DSAN	NPLIN	NG	
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	O 3	NOx	NO	NO2	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLO	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		X	X	X	X	X	X		X	X	Х	Х	X	X	X	X	X		X	X	Х	X		X	X	X	X	Х	X	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					X	X	X		Х	X												
Lower Camp	3	Meteorological																	X	X	X	Х	X												
Buffalo Viewpoint	4	Compliance	Х	X									Х					Х	X	X		Х	X												
Mannix	5	Compliance/Meteorological	Х	X									X					X	X	X	X	X	X									X		X	X
Patricia McInnes	6	Health	Х		Х	Х	X	X	Х	X		X	Х	X	Х			Х	X	X		Х	X				Х				Х	X	X	Х	X
Athabasca Valley	7	Health	Х		X	X	X	X	X		X	X	X	X	X			X	X	X		X	X			X					X	X	X	X	X
Fort Chipewyan	8	Background/Health	Х			X	X	X	X			X						X	X	X		Х	X	Х	Х		Х								
Barge Landing	9	Attribution			X								X					X	X	X		X	X			Х							X		
Lower Camp B	11	Compliance	Х	Х									X					X	Х	X		Х	X									X		X	X
Fort McKay South	13	Attribution	Х		X	X	X	X	X			X	X					X	X	X		X	X								X	X	X	X	X
Anzac	14	Attribution	Х		Х	Х	Х	X	Х			X	Х	Х	Х			X	Х	X		Х	X	Х	Х		Х				Х	X	X	X	
ĆNRL - Horizon	15	Compliance	Х		X		X	X	X			X	X					X	X	X		X	X	X			X				X		X		
Shell Muskeg River	16	Compliance	Х				X	X	Х			X	Х					Х	X	X		Х	X			Х					Х				
Wapasu Creek	17	Compliance	Х	X		X	X	X	X			X	X					X	X	X	X	X	X				X			X				X	X
Conklin	18	Background	Х		Х	Х	X	X	Х			X	Х	Х	Х	X		Х	X	X		Х	X	Х	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	X			X	X	X				X					X	X	X		X	X												
Brion Energy	20	Compliance	Х	X			X	X	Х				X					X	X	X		Х	X				Х								
Cenovus Christina Lake	500	Porta ble-Compliance	Х	X		Х	X	X	Х			X						X	X	X		Х	X												
Stat Oil Leismer	501	Porta ble-Compliance	Х	X			X	X	Х									X	X	X		Х	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	X			X	X	X									X	X	X		X	X												
HEMP	104	Portable-Health			X								X	X	X			X	X	X		X	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

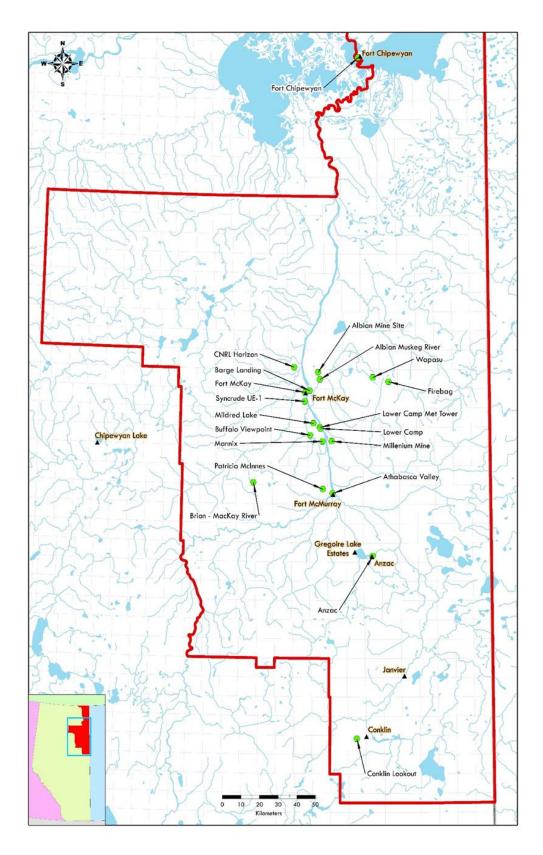


Figure 1.0 – WBEA Monitoring Network Sites

AMS 02 - Mildred Lake Station Details

General Site Information

The Mildred lake station is compliance station which is located at the Syncrude airstrip. This station was originally part of Syncrude's air monitoring network. The Mildred Lake station contains analyzers that continuously measure SO₂, H₂S, THC, Wind speed, Wind direction, External temperature, and Relative humidity.

Item	Description			
Station ID	AMS 02			
Station Name	Mildred Lake			
General description	Located at the so	outh end of the Syncr	ude airstrip, 400m west	of Hwy 63
Community	NA			
Station Coordinates	57° 3'0.02"	North	111°33'50.93"	West
Station elevation	314			Meters
Station Address	NA			
Station Type	Compliance			
Initial Commission Date	NA			
Area Land Use	Industrial / Aviat	ion		
Angle of elevation to nearby buildings	0 degrees			
Average building height in area	3-5 meters			
Airflow Restrictions	North	Yes	East	No
(yes/no)	South	No	West	No
Nearest Tree	Distance	10 meters	Height	10 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-up	o tower	
	Position	Attached to No	orth end of monitoring sh	nelter
Station Install Date	NA			
Station Origin	NA			
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре		Distance			Description		
Airstrip		80m			Runway for Syncrude aircraft		
Name	Туре		Traffic Volume	Distan	ce (m)	Description	
Roadway	access		medium	60		Asphalt road	
Highway 63	highway		high	300		Provincial highway	

Table 3.0 – Local Source Information

Area Topographic Map

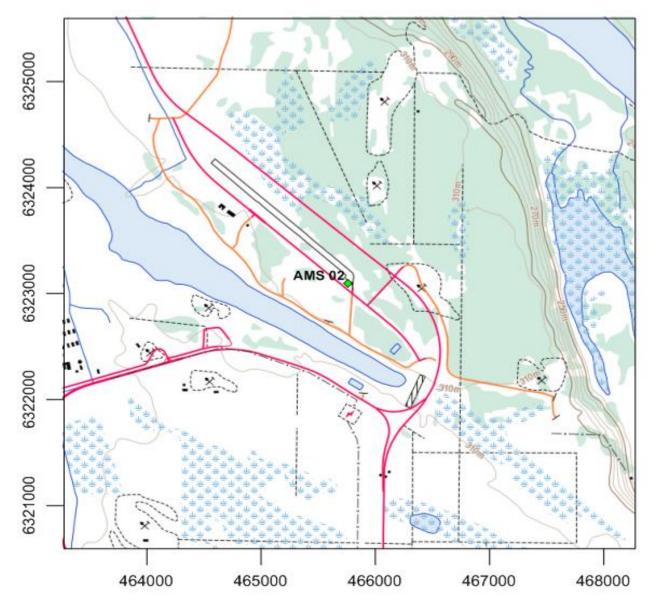


Figure 2.0 – Area Topographic map showing AMS 02 – Mildred Lake Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 02 – Mildred Lake Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Monitoring compound looking south

Figure 4.2 – Environ looking north

Figure 4.3 – Environ looking east

Figure 4.4 - Environ looking south

Figure 4.5 – Environ looking west

Figure 4.6 – Outdoor Sample Inlet and Indoor manifold setup

Figure 4.7 – Instrument rack

Equipment Inventory

Parameter Measured		Make	Model	Serial Number	Danaa	Detection Drinciple	Sampling Height (m)	
Para		IVIAKE	woder	Senai Number	Range	Detection Principle	Ground	Shelter
SO2	Sulfur Dioxide	Thermo Instruments	43i	JC1404901075	0-1000ppb	Pulsed Fluorescence	4	1
H2S	Hydrogen Sulfide	Thermo Instruments	450i	815129107	0-100ppb	Pulsed Fluorescence	4	1
THC	Total Hydrocarbons	Thermo Instruments	51i-LT	1300156231	0-50ppm	Gas Chromatography and Flame Ionization	4	1
AT/RH	Ambient temp and relative humidity.	Vaisala	HMP155	G4340061	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
WS	Wind speed	Met One	010C-1	B2027	0-80kph	Chopped optical	10	
WD	Wind direction	Met One	020C-1	B1462	0-360 degrees	Resistive (potentiometer)	10	

Table 4.0 - Analytical Equipment in AMS 02

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	2589
ZAG	Zero Air Generator	Teledyne API	T701	825
HVAC	Heating and air conditioning system. Wall mount unit	NA	NA	NA
Shelter / Building	Air monitoring trailer	C & V Shelters	OFFICE	SBB81408
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	T700	1185

Table 5.0 - Support Equipment in AMS 02

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2012-2016

Wind Speed (WS) - km/h Mildred Lake (AMS 2)

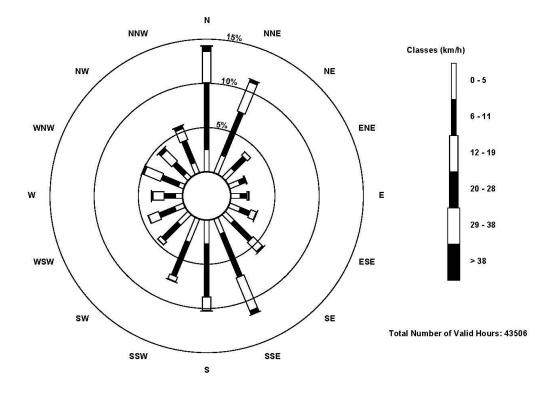


Figure 5.0 – AMS 02 Five Year Wind Rose

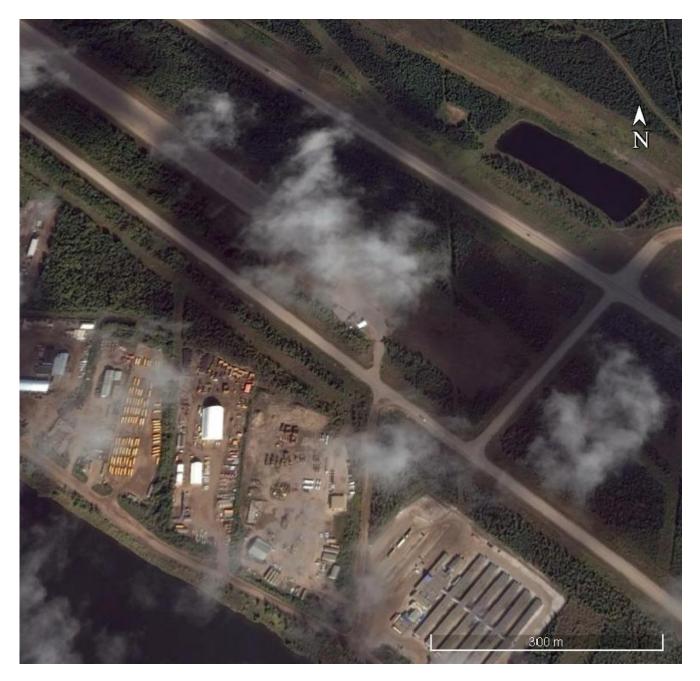


Figure 6.0 – Plan view sketch showing 500m radius around Mildred Lake Station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 04 – Buffalo Viewpoint

2017

Table of Contents

Network Background	3
AMS 04 – Buffalo View Point Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	15

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 04 – Buffalo View Point Station	7
Figure 3.0 – Aerial photo showing AMS 04 – Buffalo View Point Station	8
Figure 4.0 – Exterior of monitoring station	9
Figure 4.1 – Environ looking north	9
Figure 4.2 – Environ looking east	10
Figure 4.3 – Environ looking south	10
Figure 4.4 – Environ looking west	11
Figure 4.5 – Outdoor Sample Inlet & Indoor Sample Manifold	11
Figure 4.6 –Instrument rack	12
Table 4.0 - Analytical Equipment in AMS 04	13
Table 5.0 - Support Equipment in AMS 04	14
Figure 5.0 – AMS 04 Five Year Wind Rose	15
Figure 6.0 – Plan view sketch of Buffalo Viewpoint station showing 500m radius	16

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	AI	RM	I Ó N	NIT(ÓR	INC	δN	ETV	VŌ	RK					_		_							
	WBEA Program - X																			Er	hand	ed D	epos	ition	Prog	gram	- X								
					(CONT	INUC)US N	/ONI	TOR	ED PA	ARAMETERS														INTEGRATED SAMPLING									
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	O 3	NOx	NO	NO ₂	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLo	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	X		X	X	X	X	X	X		X	X	X	X	X	X	X	X	X		X	X	X	X		Х	Х	X	X	X	X	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					Х	Х	X		X	X												
Lower Camp	3	Meteorological																	X	X	X	X	X												
Buffalo Viewpoint	4	Compliance	Х	Х									Х					Х	Х	Х		X	Х												
Mannix	5	Compliance/Meteorological	X	X									X					X	Х	X	X	X	X									X		X	X
Patricia McInnes	6	Health	Х		Х	Х	Х	X	Х	Х		X	Х	Х	Х			Х	Х	X		X	X				Х				Х	X	X	X	Х
Athabasca Valley	7	Health	X		X	X	X	X	X		X	X	X	X	X			X	Х	X		X	X			X					X	X	X	X	X
Fort Chipewyan	8	Background/Health	X			X	X	X	Х			X						Х	Х	X		X	X	X	X		Х								
Barge Landing	9	Attribution			X								X					Х	X	X		X	X			X							X		
Lower Camp B	11	Compliance	Х	Х									X					Х	Х	X		X	X									X		X	X
Fort McKay South	13	Attribution	X		X	X	X	X	X			X	X					X	Х	X		X	X								X	X	X	X	X
Anzac	14	Attribution	Х		Х	X	Х	X	Х			X	Х	Х	Х			Х	Х	X		X	X	X	X		Х				Х	X	X	X	
ĆNRL - Horizon	15	Compliance	X		X		X	X	X			X	X					X	Х	X		X	X	X			X				X		X		
Shell Muskeg River	16	Compliance	X				Х	X	Х			X	Х					Х	Х	X		X	X			X					Х				
Wapasu Creek	17	Compliance	X	X		X	X	X	X			X	X					X	Х	X	X	X	X				X			X				X	X
Conklin	18	Background	Х		Х	Х	Х	X	Х			X	Х	Х	Х	X		Х	Х	Х		X	X	X	X		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	X	X			X	X	X				X					X	Х	X		X	X												
Brion Energy	20	Compliance	X	Х			X	X	X				X					Х	Х	X		X	X				X								
Cenovus Christina Lake	500	Porta ble-Compliance	X	X		X	X	X	X			X						Х	Х	X		X	X												
Stat Oil Leismer	501	Porta ble-Compliance	X	Х			Х	X	Х									Х	Х	X		X	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	X			Х	X	X									Х	Х	X		X	X												
HEMP	104	Porta ble-He alth			X								X	X	X			X	Х	X		X	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

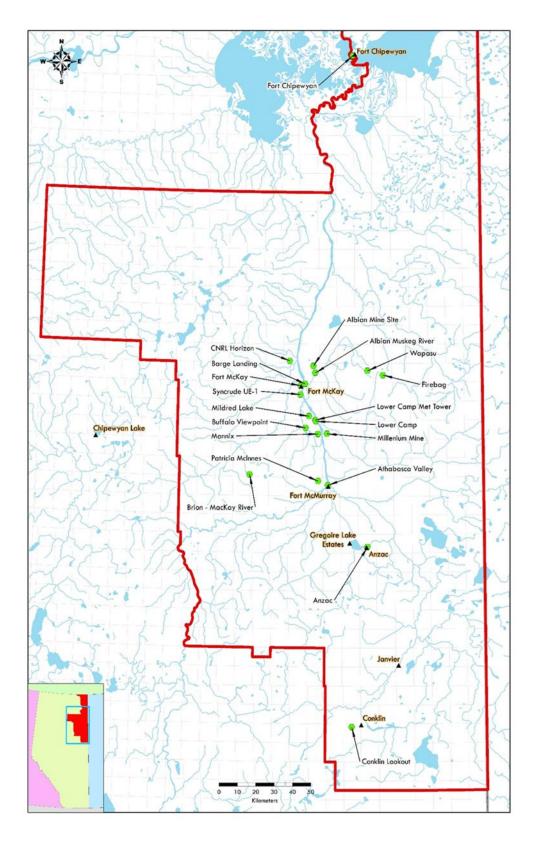


Figure 1.0 - WBEA Monitoring Network Sites

AMS 04 - Buffalo View Point Station Details

General Site Information

The Buffalo View Point station was installed as a Compliance Station. It is situated on a hill in the reclaimed area south of the North American Access Road

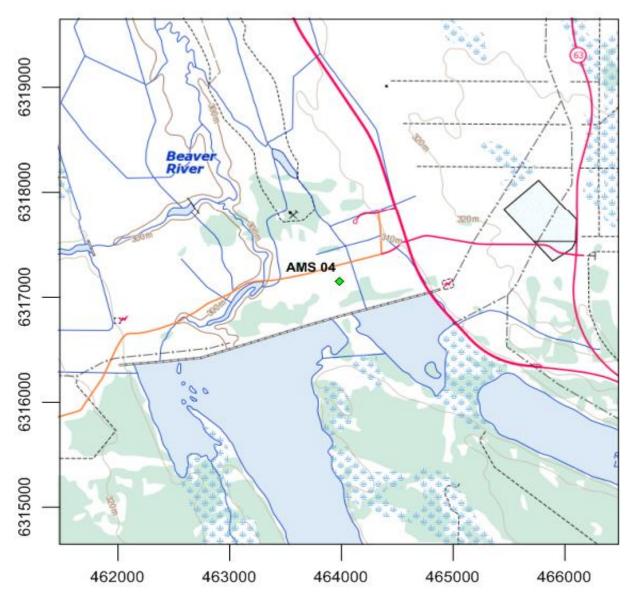

Item	Description					
Station ID	AMS 04					
Station Name	Buffalo Viewpoint					
General description	Located at the sour	nd end of	Syncrude's So	uth Mine, along Syr	ncrude N	orth American
	road.					
Community	NA					
Station Coordinates	56°59'47.24"		North	111°35'34.48'	1	West
Station elevation	315					Meters
Station Address	NA					
Station Type	Compliance					
Initial Commission Date	NA					
Area Land Use	Industrial					
Angle of elevation to nearby	0 degrees					
buildings						
Average building height in	NA					
area						
Airflow Restrictions	North	no		East	No	
(yes/no)	South	no		West	No	
Nearest Tree	Distance		10 meters	Height		7 meters
Sample Manifold Type	Glass					
Meteorological Tower	Height	10 me	eters			
Information	Туре	Alum	a crank up tow	er		
	Position	Attac	hed to North e	nd of monitoring sł	nelter	
Station Install Date	NA					
Station Origin	Purchased new.					
Site Preparation	Level gravel pad					

Table 2.0 – General Site Information

Localized Sources

Туре	Dis	tance	Description	Description					
None	NA		NA						
Name	Туре	Traffic Volume	Distance (m)	Description					
Roadways	Dirt road	Low	3 west	Access road to AMS 04.					
North American Road	Dirt road	Medium	17.5 northwest	Road used to access North American/ Syncrude area.					
Highway 63	Asphalt road	High	450 east	Paved highway mostly used by public.					

Table 3.0 – Local Source Information

Area Topographic Map

Figure 2.0 – Area Topographic map showing AMS 04 – Buffalo View Point Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 04 – Buffalo View Point Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 - Environ looking north

Figure 4.2 – Environ looking east

Figure 4.3 - Environ looking south

Figure 4.4 - Environ looking west

Figure 4.5 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.6 –Instrument rack

Equipment Inventory

Parameter Measured		Malia	Madal		Damas	Data ati an Drin sin la	Sampling	Height (m)
Paran	neter Measured	Make	Model	Serial Number	Range	Detection Principle	Ground	Shelter
H2S	Hydrogen Sulfide	Thermo Instruments	450i	1336160094	0-100ppb	Pulsed Fluorescence	4	
SO2	Sulphur Dioxide	Thermo Instruments	43i	JC1327300932	0-1000ppb	Pulsed Fluorescence	4	
тнс	Total Hydrocarbon	Thermo Instruments	51-iLT	1201650671	0-50ppm	Gas Chromatography and Flame Ionization	4	
WS	Wind Speed	Met One	010C-1	G3211	0-80 Kph	Chopped optical	10	
WD	Wind Direction	Met One	020C-1	P10612	0-360 Degrees	Resistive (potentiometer)	10	
AT/RH	Ambient Temperature / Relative Humidity	HMP 155	G4330041	G4330041	AT: -80 - +60 RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor		
VS	Visibility Sensor	Vaisala	PWD22	H5030007	0-20 KM	Present weather detector.		

Table 4.0 - Analytical Equipment in AMS 04

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	2635
Datalogger	Logger being used to pull VS data	Campbell Scientific	CR1000	46568
ZAG	Zero Air Generator	Teledyne API	T701	4297
HVAC	Heating and Air Conditioning system. Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring trailer	C & V Shelters	OFFICE	SAA81406
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Thermo Instruments	SABIO 4010	11551008

Table 5.0 - Support Equipment in AMS 04

Wind Rose

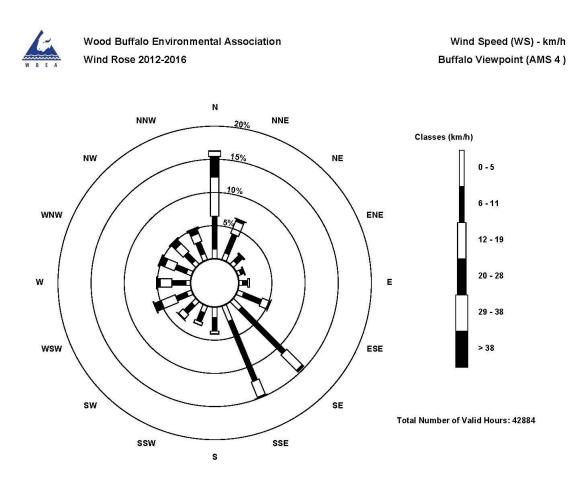


Figure 5.0 – AMS 04 Five Year Wind Rose

Figure 6.0 – Plan view sketch of Buffalo Viewpoint station showing 500m radius

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 05 – Mannix

2017

Table of Contents

Network Background	3
AMS 05 – Mannix Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	14
Wind Rose	16

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	1
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	5
Table 3.0 – Local Source Information6	5
Figure 2.0 – Area Topographic map showing AMS 05 – Mannix	7
Figure 3.0 – Aerial photo showing AMS 05 – Mannix	3
Figure 4.0 – Exterior of monitoring station	9
Figure 4.1 – Sampling deck which contains EC PM2.5 Partisol sampler & EC High Volume PAH sampler 9	9
Figure 4.2 – Environ looking north)
Figure 4.3 – Environ looking east)
Figure 4.4 – Environ looking south	1
Figure 4.5 – Environ looking west	1
Figure 4.6 – Outdoor Sample Inlet & Indoor Sample Manifold	2
Figure 4.7 – Instrument rack	2
Figure 4.8 – Metrological tower	3
Table 4.0 - Analytical Equipment in AMS 0514	1
Table 5.0 - Support Equipment in AMS 0515	5
Figure 5.0 – AMS 05 Five Year Wind Rose16	5
Figure 6.0 – Plan View Sketch showing 500m Radius around Mannix station	

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO₂, H₂S, TRS, O₃, NO_x, NO, NO₂, NH₃, CO, PM_{2.5}, THC, NMHC, and CH₄. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO₂, H₂S, O₃, NO_x, NO, NO₂, NH₃, PM_{2.5}, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM_{2.5}, PM₁₀, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	All	RM	I Ó N	NIT(ÓR	INC	δN	ETV	VŌ	RK					_		_							
WBEA Program - X																				Er	hand	ed D	epos	ition	Prog	gram	- X								
					(ONT	INUC	US N	/ONI	TOR	ED P A	ARAMETERS														INTEGRATED SAMPLING									
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	Ô3	NOx	NO	NO ₂	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLO	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	X		Х	Х	X	X	X	X		X	X	X	X	X	X	X	X	X		X	X	X	X		X	Х	X	X	X	X	XX	XX	XX
Mildred Lake	2	Compliance	X	X									X					Х	х	X		X	X												
Lower Camp	3	Meteorological																	X	X	X	X	X												
Buffalo Viewpoint	4	Compliance	X	X									X					Х	Х	X		X	X												
Mannix	5	Compliance/Meteorological	X	X									X					Х	Х	X	X	X	X									X		X	X
Patricia McInnes	6	Health	X		Х	Х	Х	Х	X	Х		X	Х	X	X			Х	Х	X		Х	X				Х				Х	X	X	X	X
Athabasca Valley	7	Health	X		Х	Х	X	X	X		X	X	X	X	X			X	Х	X		X	X			X					X	X	X	X	X
Fort Chipewyan	8	Background/Health	X			Х	X	X	Х			X						Х	Х	X		X	X	X	Х		Х								
Barge Landing	9	Attribution			X								X					X	Х	X		X	X			X							X		
Lower Camp B	11	Compliance	Х	Х									Х					Х	Х	X		X	X									X		X	X
Fort McKay South	13	Attribution	X		X	X	X	X	X			X	X					X	Х	X		X	X								X	X	X	X	X
Anzac	14	Attribution	Х		Х	Х	X	X	X			X	Х	Х	Х			Х	Х	X		X	X	X	Х		Х				X	X	X	X	
ĆNRL - Horizon	15	Compliance	X		Х		X	X	X			X	X					X	Х	X		X	X	X			X				X		X		
Shell Muskeg River	16	Compliance	X				X	Х	X			X	Х					Х	Х	X		X	X			X					X				
Wapasu Creek	17	Compliance	X	X		Х	X	X	X			X	X					X	Х	X	X	X	X				X			X				X	X
Conklin	18	Background	Х		Х	Х	X	Х	Х			X	Х	Х	Х	X		Х	Х	X		X	X	X	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	X	X			X	X	X				X					X	Х	X		X	X												
Brion Energy	20	Compliance	X	X			X	Х	Х				X					Х	Х	X		X	X				X								
Cenovus Christina Lake	500	Porta ble-Compliance	Х	X		Х	X	X	X			X						Х	X	X		X	X												
Stat Oil Leismer	501	Porta ble-Compliance	Х	Х			X	X	Х									Х	Х	X		X	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	X			Х	Х	Х									Х	Х	X		X	X												
HEMP	104	Porta ble-He alth			Х								X	X	X			X	Х	X		X	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

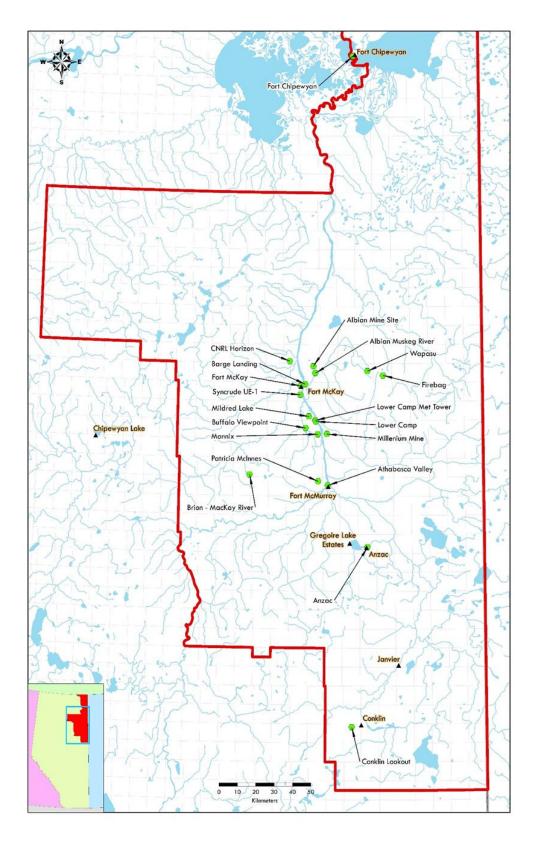


Figure 1.0 - WBEA Monitoring Network Sites

AMS 11 – Lower Camp Station Details

General Site Information

The Mannix station was originally part of the air monitoring network operated by Suncor. It contains analyzers that continuously measure SO2, H2S, and THC. The station is located north of a storage tank complex at Suncor.

Item	Description					
Station ID	AMS 05					
Station Name	Mannix					
General description	Located south of Sun	cor on	Range road 10	1 off of Suncor Base	Plant r	oad.
Community	NA					
Station Coordinates	56°58'4.67"		North	111°28'55.56"		West
Station elevation	332					Meters
Station Address	NA					
Station Type	Compliance/Metrolo	gical				
Initial Commission Date	NA					
Area Land Use	Industrial					
Angle of elevation to nearby buildings	0 degrees					
Average building height in area	NA					
Airflow Restrictions	North	no		East	No	
(yes/no)	South	no		West	No	
Nearest Tree	Distance		40 meters	Height		10 meters
Sample Manifold Type	Glass					<u></u>
Meteorological Tower	Height	75 m	leters			
Information	Туре	Stati	onary tower			
	Position	Place	e outside of the	Mannix compound	on left	hand side.
Station Install Date	NA					
Station Origin	Donated by industry.					
Site Preparation	Level gravel pad					

Table 2.0 – General Site Information

Localized Sources

Туре		Distan	ce		Description						
Industrial		200 m	eters east		Storage tank complex. Possible source of detectable emissions.						
Name	Туре	-	Traffic Volume	Distan	ce (m)	Description					
Range road 101	Asphalt road		Medium	100 m	eters	Paved Road. Frequented by heavy equipment, tractor trailers and pickup trucks.					

Table 3.0 – Local Source Information

Area Topographic Map

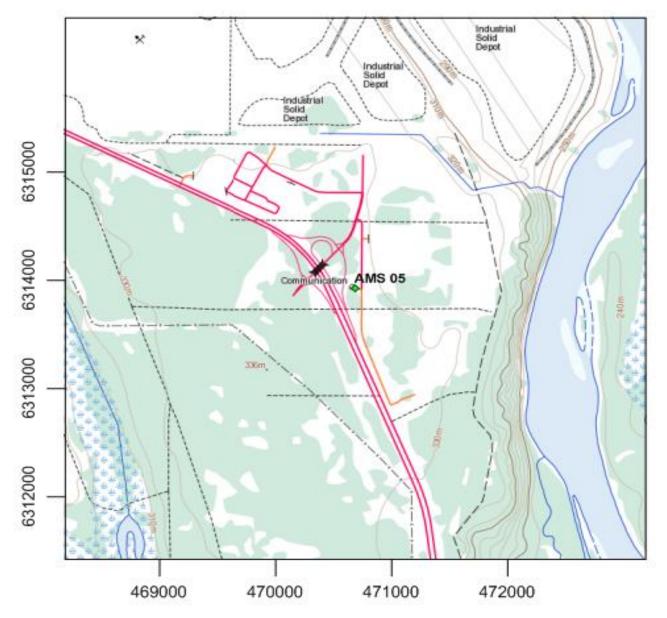


Figure 2.0 – Area Topographic map showing AMS 05 – Mannix

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 05 – Mannix

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Sampling deck which contains EC PM2.5 Partisol sampler & EC High Volume PAH sampler

Figure 4.2 – Environ looking north

Figure 4.3 – Environ looking east

Figure 4.4 – Environ looking south

Figure 4.5 - Environ looking west

Figure 4.6 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.7 – Instrument rack

Figure 4.8 – Metrological tower

Equipment Inventory

Parameter Measured		Make	Model	Serial Number	Danga	Dotostion Drinsinla	Sampling I	Height (m)		
Paran	neter Weasured	маке	wodei	Serial Number	Range	Detection Principle	Ground	Shelter		
SO2	Sulfur Dioxide	Thermo Instruments	43i	1008841399	0-1000ppb	Pulsed Fluorescence	4	1		
H2S	Hydrogen Sulfide	Thermo Instruments	450i	0815129108	0-100ppb	0-100ppb Pulsed Fluorescence				
THC	Total Hydrocarbons	Thermo Instruments	51i-LT 1317958295		0-50ppm	Gas Chromatography and Flame Ionization	4	1		
РАН	Polly Aromatic Hydrocarbon. Integrated Sampling	Akrulogic	N55326	12610	NA	Canister / Filter Sampler	2			
WS	Wind Speed	RM Young 81000 NA 0-80 Kph		Three way sonic sensor	20/45/75					
WD	Wind Direction	RM Young	81000	NA	0-360 Degrees	Three way sonic sensor	20/45/75			
VW	Vertical Wind	RM Young	81000	NA	0-80 Kph	Three way sonic sensor	20/45/75			
AT/RH	Ambient Temperature / Relative Humidity	Vaisala	HMP155	NA	Temp: -80 - +60 degrees Celsius / RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	20/45/75			

Table 4.0 - Analytical Equipment in AMS 05

Description	Make	Model	Serial Number
Datalogger	Campbell Scientific	CR3000	2580
Zero Air Generator	Teledyne API	T701	138
Heating and Air Conditioning system. Wall mount unit	BARD	NA	NA
Air monitoring trailer	C & V Shelters	OFFICE	SAA81407
Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Thermo Instruments	SABIO 4010	14300410
	Datalogger Zero Air Generator Heating and Air Conditioning system. Wall mount unit Air monitoring trailer Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference	DataloggerCampbell ScientificZero Air GeneratorTeledyne APIHeating and Air Conditioning system. Wall mount unitBARDAir monitoring trailerC & V SheltersUses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily referenceThermo Instruments	DataloggerCampbell ScientificCR3000Zero Air GeneratorTeledyne APIT701Heating and Air Conditioning system. Wall mount unitBARDNAAir monitoring trailerC & V SheltersOFFICEUses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for

Table 5.0 - Support Equipment in AMS 05

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2012-2016

Wind Speed 20 m (WS20m) - km/h Mannix (AMS 5)

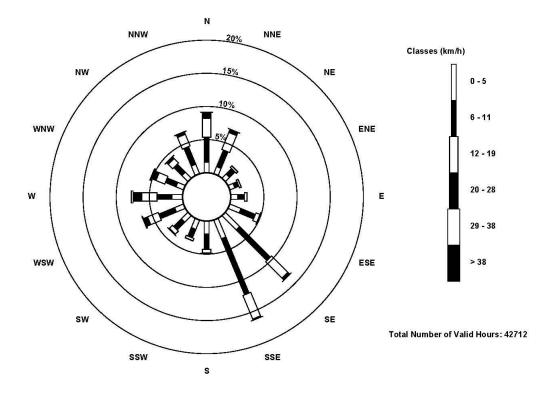


Figure 5.0 – AMS 05 Five Year Wind Rose

Figure 6.0 – Plan View Sketch showing 500m Radius around Mannix station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 06 – Patricia McInnes

2017

Table of Contents

Network Background	3
AMS 06 – Patricia McInnes Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	
Wind Rose	

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 06 – Patricia McInnes Station	7
Figure 3.0 – Aerial photo showing AMS 06 – Patricia McInnes Station	8
Figure 4.0 – Exterior of monitoring station	9
Figure 4.1 – Environ looking south	9
Figure 4.2 – Environ looking west	10
Figure 4.3 Environ looking east	
Figure 4.4 – Environ looking north	11
Figure 4.5 – Indoor sample manifold setup and outdoor sample inlet	11
Table 4.0 - Analytical Equipment in AMS 06	14
Table 5.0 - Support Equipment in AMS 06	14
Figure 5.0 – AMS 06 Five Year Wind Rose	15
Figure 6.0 – Plan View Sketch showing 500m radius around Patrician McInnes station	16

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO₂, H₂S, TRS, O₃, NO_x, NO, NO₂, NH₃, CO, PM_{2.5}, THC, NMHC, and CH₄. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO₂, H₂S, O₃, NO_x, NO, NO₂, NH₃, PM_{2.5}, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM_{2.5}, PM₁₀, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oil Sands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

	WBEA AMBIENT AIR MONITORING NETWORK																																		
WBEA Program - X												Enhanced Deposition Program - X																							
CONTINUOUS MONITORED PAI											PARAMETERS															INTEGRATED SAMPLING									
STATION NAME	STATION #	TYPE	SO ₂	O ₂ H ₂ S TRS O ₃ NO _X NO NO ₂ NH ₃ C							CO	PM _{2.5}	PM25 THC NMHC CH4 PAH B			BTEX	Calib	WS	WS WD VWS AT			RH	H GR SW BP PRE			PRECIP	EC/OC	SASS	Dichot	PM ₁₀	PM _{2.5}	VOC	PAH	PRECIP	
Fort McKay - Bertha Ganter	1	Health	Х		Χ	Х	Х	Х	Х	Х		X	X	Х	Х	X	X	X	X	X		Х	Х	Х	X		Х	Х	X	X	Х	Х	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					Х	Х	X		Х	X												
Lower Camp	3	Meteorological																	Х	X	Х	Х	Х												
Buffalo Viewpoint	4	Compliance	Х	Х									Х					Х	X	X		Х	Х												
Mannix	5	Compliance/Meteorological	Х	Х									Х					Х	Х	X	Х	Х	Х									X		X	X
Patricia McInnes	6	Health	Х		X	Х	Х	X	Х	Х		X	Х	Х	Х			X	X	X		Х	Х				Х				X	Х	Х	Х	Х
Athabasca Valley	7	Health	Х		X	Х	Х	X	Х		X	X	Х	Х	Х			X	X	X		Х	Х			X					X	Х	Х	Х	Х
Fort Chipewyan	8	Background/Health	Х			Х	Х	X	Х			X						X	X	X		Х	Х	Х	Х		Х								
Barge Landing	9	Attribution			X								Х					X	X	X		Х	Х			X							Х		
Lower Camp B	11	Compliance	Х	Х									Х					Х	Х	X		Х	Х									X		X	X
Fort McKay South	13	Attribution	Х		Х	Х	Х	Х	Х			X	Х					Х	Х	X		Х	Х								Х	X	Х	X	X
Anzac	14	Attribution	Х		X	Х	Х	Х	Х			X	Х	Х	Х			Х	Х	X		Х	Х	Х	Х		Х				Х	Х	Х	Х	
CNRL - Horizon	15	Compliance	Х		Χ		Х	Х	Х			X	Х					Х	Х	Χ		Х	Х	Х			Х				Х		Х		
Shell Muskeg River	16	Compliance	Х				Х	Х	Х			X	Х					Х	Х	Χ		Х	Х			Χ					Х				
Wapasu Creek	17	Compliance	Х	Х		Х	Х	Х	Х			X	Х					Х	Х	Χ	Х	Х	Х				Х			X				X	X
Conklin	18	Background	Х		X	Х	Х	Х	Х			X	Х	Х	Х	X		Χ	X	X		Х	Х	Х	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	Х			Х	Х	Х				Х					Х	Х	X		Х	Х												
Brion Energy	20	Compliance	Х	Х			Х	Х	Х				Х					Х	X	Χ		Х	Х				Х								
Cenovus Christina Lake	500	Portable-Compliance	Х	Х		Х	Х	Х	Х			X						Х	X	X		Х	Х												
Stat Oil Leismer	501	Portable-Compliance	Х	Х			Х	Х	Х									Х	X	X		Х	Х												
ConocoPhillips Surmont	502	Portable-Compliance	Х	Х			Х	Х	Х									Х	X	X		Х	Х												
HEMP	104	Portable-Health			Χ								Х	Х	Х			Х	X	X		Х	Х												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

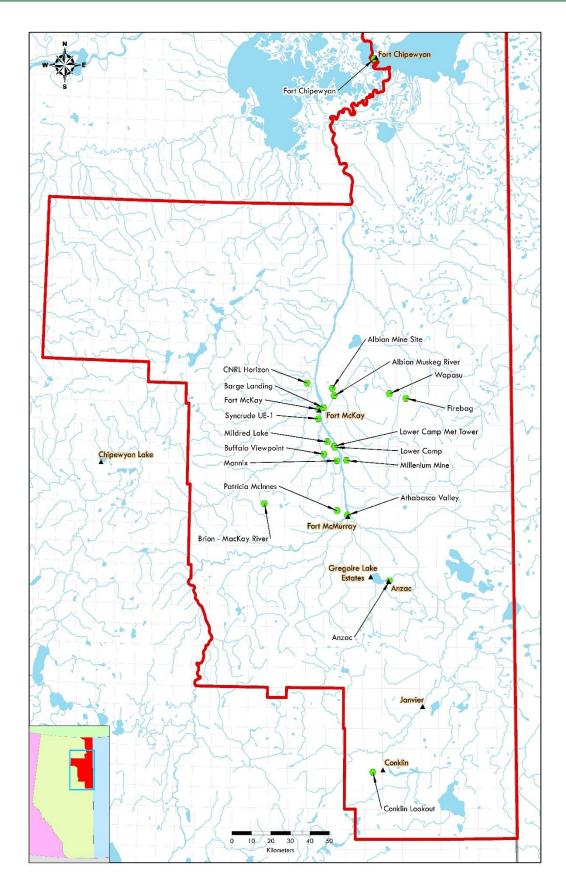


Figure 1.0 - WBEA Monitoring Network Sites

AMS 06- Patricia McInnes Station Details

General Site Information

The Patricia McInnes station was installed in 1997 as a community station to monitor in the West end of Fort McMurray in the Timberlea subdivision. It is situated on a gravel pad near a local recreation area and baseball fields.

Item	Description			
Station ID	AMS 06			
Station Name	Patricia McInnes			
General description	Located in the we	est end of Fort McMı	urray in the Timberlea su	b-division.
Community	Regional Municip	ality of Wood Buffal	0	
Station Coordinates	56°45'4.96"	North	111°28'36.10"	West
Station elevation	362			Meters
Station Address	NA			
Station Type	Health			
Initial Commission Date	NA			
Area Land Use	Residential			
Angle of elevation to nearby buildings	0 degrees			
Average building height in area	NA			
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	10 meters	Height	3 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-u	p tower	
	Position	Attached to so	uth end of monitoring sh	elter
Station Install Date	1997			
Station Origin	Purchased new			
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре		Distanc	ce		Description			
Recreation complex		northw	north, northeast and vest of the station at vimately 50 meters.		of the fields and nplex. Possible PM and			
Baseball field			north, north east and no f the statin, approximate			f the fields and plex. Possible source c.		
Residential subdivision To			south and south east of , approximately 100 met		Wood burning observed in the are periodically in wood stoves and backyard fire pits. Possible PM source.			
Name	Туре		Traffic Volume	Distan	ce (m)	Description		
Roadways Residential Roadway			Medium	30		Paved road		

Table 3.0 – Local Source Information

Area Topographic Map

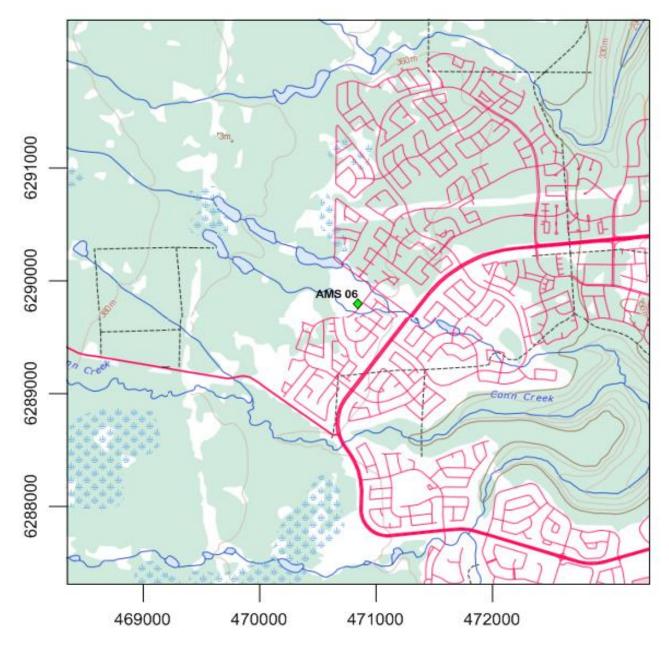


Figure 2.0 – Area Topographic map showing AMS 06 – Patricia McInnes Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 06 – Patricia McInnes Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 - Environ looking south

Figure 4.2 - Environ looking west

Figure 4.3 Environ looking east

Figure 4.4 - Environ looking north

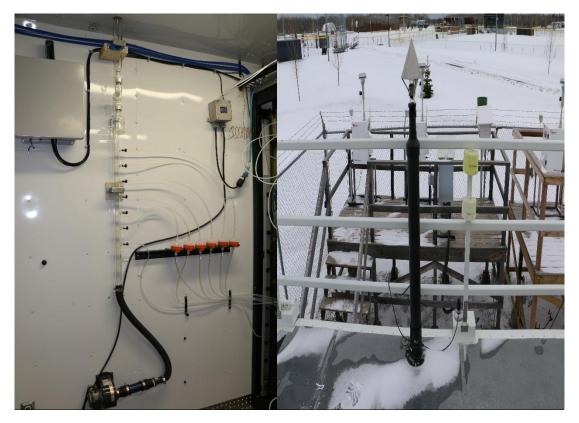


Figure 4.5 – Indoor sample manifold setup and outdoor sample inlet

Figure 4.6 - East (on left side) and west instrument racks

Figure 4.7 – Sampling decks

Equipment Inventory

Понон	notor Mossurad	Maka	Madal	Carial Number	Danga	Detection Drinciple	Sampling	Height (m)
Paran	neter Measured	Make	Model	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulphur Dioxide	Thermo Instruments	43i	1008841397	0-1000ppb	Pulsed Fluorescence	4	1
TRS	Total Reduced Sulfur	Thermo Instruments	43i-TLE	1218153358	0-100ppb	Pulsed Fluorescence	4	1
TRS converter	TRS converter	CD Nova	CDN-101	-101 520 NA wit		Thermal Oxidizer paired with 43iTLE for TRS measurement		
NOx	Nitrogen Dioxide	Thermo Instruments	42i	1218153460	0-1000ppb	Chemiluminescence	4	1
NMHC	Non-Methane Hydrocarbons	Thermo Instruments	55i-LT	1331259521	0-50ppm	Gas Chromatography and Flame Ionization	4	1
O3	Ozone	Thermo Instruments	49i	1300156234	0-500 ppb	UV Photometric	4	1
PM2.5	PM <2.5 um in diameter	Thermo Instruments	5030	E1475	0-1000ug/m3	Synchronized Nephelometric/Radiometric Particulate Mass Monitor	4	1
NH3	Ammonia	Teledyne API	T201	215	0-2500 ppb	Chemiluminescence	4	1
RH/Temp	Relative humidity / external temp	Vaisala	HMP155	J5140017 2013	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
WS	Wind Speed<10um	Met One	010C-1	E5132	0-80kph	Chopped optical	10	
WD	Wind Direction	Met One	20C-1	E4854	0-360 degrees	Resistive (potentiometer)	10	
PM 2.5A	Integrated sampling	Thermo	2025iD	200IW205251411	NA	Inertial Separator and Cartridge Filter	2	
PM 2.5AB	Integrated sampling	Thermo	2025iD	20012 02151205	NA	Inertial Separator and Cartridge Filter	2	
PM 10A	Integrated sampling	Thermo	2025iD	20012 04851408	NA	Inertial Separator and Cartridge Filter	2	
PM 10B	Integrated sampling	Thermo	2025iD	20012 03861308	NA	Inertial Separator and Cartridge Filter	2	
РАН	Polly Aromatic Hydrocarbon. Integrated Sampling	Tisch Environmental	TE100BL	1326	NA	Canister and filter sampler.	2	
VOC	Volatile Organic Compound	Tisch Environmental	TE-123	1021	NA	Canister sampler	4	1

Precip	Precipitation sampler	NA	NA	60198	NA	Precipitation collector	2	

Table 4.0 - Analytical Equipment in AMS 06

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	10957
ZAG	Zero Air Generator	Teledyne API	T701	201
HVAC	Air Conditioner/Heater .Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring trailer	ITB	NA	09 14786
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	T701	2449

Table 5.0 - Support Equipment in AMS 06

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2012-2016

Wind Speed (WS) - km/h Patricia McInnes (AMS 6)

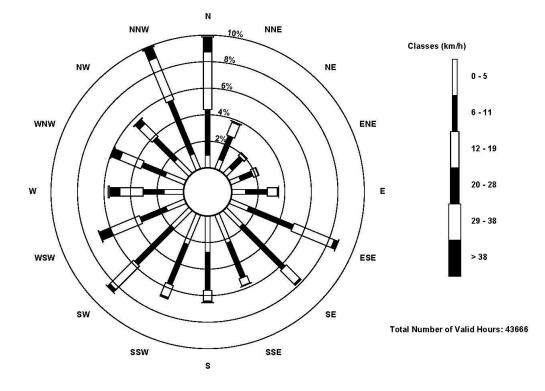


Figure 5.0 – AMS 06 Five Year Wind Rose

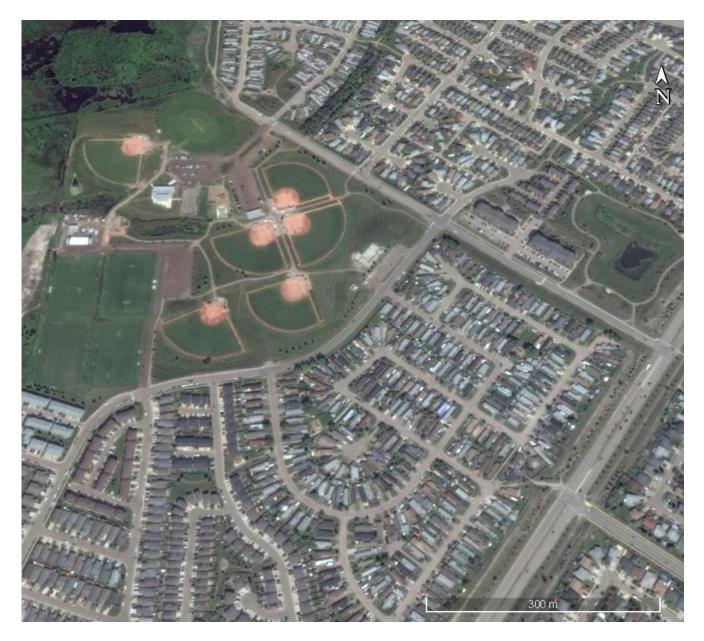


Figure 6.0 – Plan View Sketch showing 500m radius around Patrician McInnes station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 07 – Athabasca Valley

Table of Contents

Network Background	3
AMS 07 – Athabasca Valley Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	15

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	.4
Figure 1.0 – WBEA Monitoring Network Sites	.5
Table 2.0 – General Site Information	.6
Table 3.0 – Local Source Information	.6
Figure 2.0 – Area Topographic map showing AMS 07 – Athabasca Valley Station	.7
Figure 3.0 – Aerial photo showing AMS 07 – Athabasca Valley Station	.8
Figure 4.0 – Exterior of monitoring station	.9
Figure 4.1 – Sampling Deck	.9
Figure 4.2 – Environ looking north	10
Figure 4.3 – Environ looking east	10
Figure 4.4 – Environ looking south	11
Figure 4.5 – Environ looking west	11
Figure 4.6 – Indoor Sample Manifold and Outdoor sample inlet	12
Figure 4.7 – East Rack (on the left) & West Rack	12
Table 4.0 - Analytical Equipment in AMS 07	14
Table 5.0 - Support Equipment in AMS 07	14
Figure 5.0 – AMS 07 Five Year Wind Rose	15
Figure 6.0 – Plan View Sketch	56

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	AI	RM	ÓN	IIT	ÖR	INC	δN	ETV	NŌ	RK														
		WBEA Program	m - X																	Er	nhano	ed D	epos	ition	Prog	ram	- X								
					(CONT	INUC)US N	/ON	TOR	ED PA	RAN	ETER	S														INTEGRATED SAMPLING							
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	O 3	NOx	NO	NO ₂	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calit	WS	WD	WWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLo	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	X		X	X	X	Х	Х	Х		X	X	Х	Х	X	X	X	Χ	X		Х	Х	X	Х		Х	Х	X	X	Х	Х	XX	XX	XX
Mildred Lake	2	Compliance	X	X									X					X	Х	X		X	X												
Lower Camp	3	Meteorological																	X	X	X	X	X												
Buffalo Viewpoint	4	Compliance	Х	X									Х					Х	Х	X		X	Х												
Mannix	5	Compliance/Meteorological	X	X									X					X	X	X	X	X	X									X		X	X
Patricia McInnes	6	Health	X		X	X	X	X	Х	Х		X	Х	Х	Х			X	Х	X		Х	X				Х				Х	X	Х	Х	X
Athabasca Valley	7	Health	Х		X	X	X	X	Х		X	X	X	Х	Х			X	X	X		X	Х			X					Х	X	Х	Х	X
Fort Chipewyan	8	Background/Health	X			X	X	X	Х			X						X	х	X		X	X	X	Х		X								
Barge Landing	9	Attribution			X								X					X	Х	X		Х	Х			X							Х		
Lower Camp B	11	Compliance	Х	Х									X					Х	Х	X		Х	Х									X		X	X
Fort McKay South	13	Attribution	Х		X	X	X	Х	Х			X	Х					Х	Х	X		Х	Х								Х	X	Х	X	X
Anzac	14	Attribution	X		X	X	X	X	Х			X	X	Х	Х			X	Х	X		X	X	X	Х		X				Х	X	Х	X	
CNRL - Horizon	15	Compliance	X		X		X	X	Х			X	X					X	х	X		X	X	X			Х				Х		Х		
Shell Muskeg River	16	Compliance	X				X	X	Х			X	X					Х	Х	X		Х	Χ			X					Χ				
Wapasu Creek	17	Compliance	X	X		X	X	X	Х			X	X					X	х	X	X	X	X				X			X				X	X
Ćonklin	18	Background	X		X	X	X	X	Х			X	X	Х	Х	X		X	Х	X		Х	Х	X	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	X	X			X	X	Х				X					X	X	X		X	X												
Brion Energy	20	Compliance	Х	X			X	Х	Х				Х					X	Х	X		Х	X				Х								
Će novus Christi na Lake	500	Porta ble-Compliance	Х	Х		X	X	Х	Х			Х						Х	Х	X		Х	Х												
Stat Oil Leismer	501	Porta ble-Compliance	X	X			X	X	Х									Х	Χ	X		Х	Х												
ConocoPhillips Surmont	502	Porta ble-Compliance	X	X			X	X	Х									X	Х	X		Х	Χ												
HEMP	104	Portable-He alth			X								X	Х	Х			X	X	X		Х	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

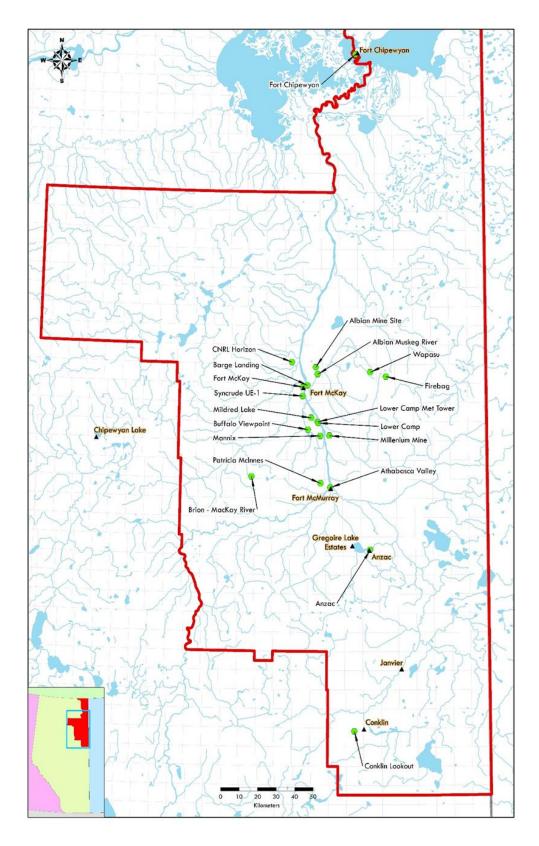


Figure 1.0 - WBEA Monitoring Network Sites

AMS 07 - Athabasca Valley Station Details

General Site Information

The Athabasca Valley Station is a community station that is located at McDonald Drive in Fort McMurray. This station was built and operated by Alberta Environmental Protection until the WBEA took it over in the fall of 1997.

Item	Description			
Station ID	AMS 07			
Station Name	Athabasca Valley			
General description	Located on C.A. Kr park.	night Way, near th	e Athabasca river and	the McDonald Island
Community	Fort McMurray			
Station Coordinates	56°44'1.06"	North	111°23'25.55"	West
Station elevation	250			Meters
Station Address	NA			
Station Type	Health			
Initial Commission Date	NA			
Area Land Use	Recreation			
Angle of elevation to nearby buildings	0 degrees			
Average building height in area	NA			
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	80 meters	Height	10 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-up	tower	
	Position	Attached to No	rth end of monitoring	shelter
Station Install Date	NA			
Station Origin	Purchased new			
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре		Distan	ce		Description				
Residential area		100 m			Apartment buildings				
Recreational park		500 m	NE		McDonald Island Park				
Name	Туре	*	Traffic Volume	Distan	ce (m)	Description			
C.A. Knight Way	Asphalt road		High	15 me	ters	Access road to McDonald Island Park			

Table 3.0 – Local Source Information

Area Topographic Map

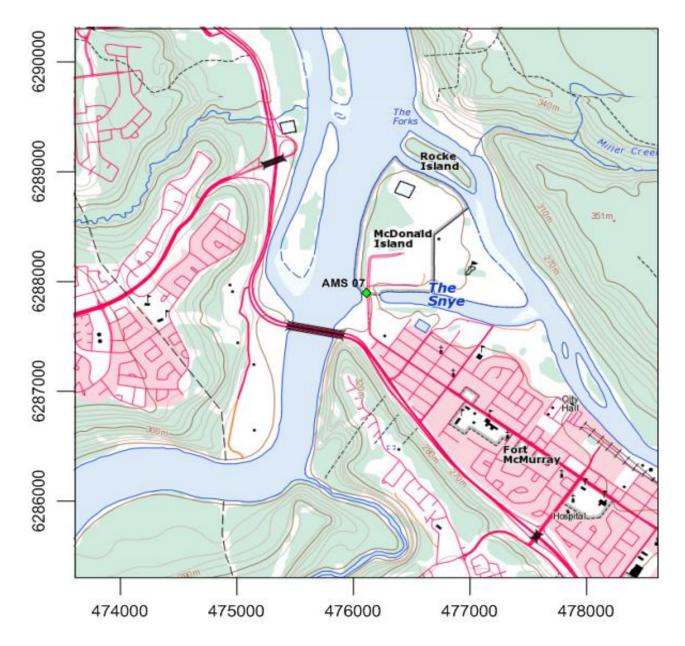


Figure 2.0 – Area Topographic map showing AMS 07 – Athabasca Valley Station

Aerial Photo

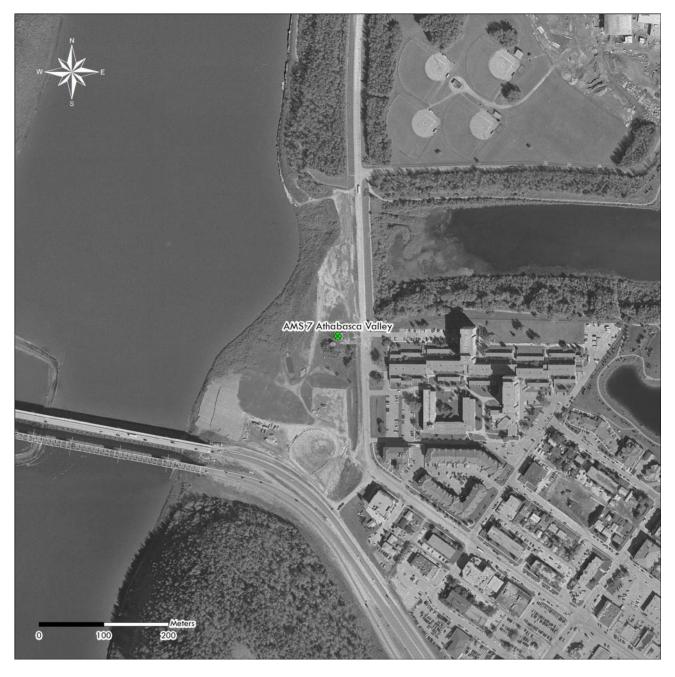


Figure 3.0 – Aerial photo showing AMS 07 – Athabasca Valley Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Sampling Deck

Figure 4.2 – Environ looking north

Figure 4.3 – Environ looking east

Figure 4.4 – Environ looking south

Figure 4.5 - Environ looking west

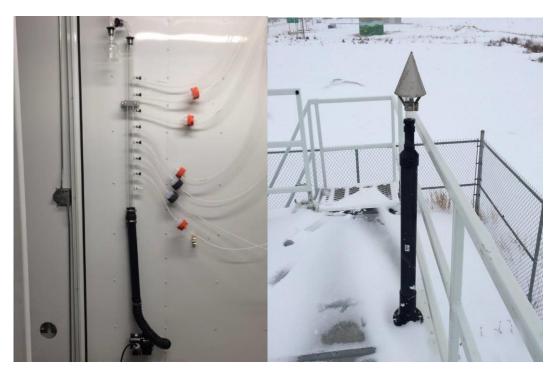


Figure 4.6 –Indoor Sample Manifold and Outdoor sample inlet

Figure 4.7 – East Rack (on the left) & West Rack

Equipment Inventory

Dorom	actor Macaurad	Maka	Model	Conicl Number	Danga	Detection Drinciple	Sampling	Height (m)
Paran	neter Measured	Make	Iviodei	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulphur Dioxide	Thermo Instruments	45C	630718530	0-1000ppb	Pulsed Fluorescence	4	1
TRS	Total Reduced Sulfur	Thermo Instruments	43i-TLE	1507864683	0-100ppb	Pulsed Fluorescence	4	1
TRS converter	Thermal oxidizer	CD Nova	CDN 101	503	NA	Thermal Oxidizer paired with 43iTLE for TRS measurement		1
NOx	NOx Nitrogen Dioxide Thermo Instruments		42C	601114773	0-1000ppb	Chemiluminescence	4	1
NMHC	Methane Non Methane	Thermo Instruments	55i-LT	1426262594	0-50ppm	Gas Chromatography and Flame Ionization	4	1
03	Ozone Thermo Instruments		49i	1507964700	0-500 ppb	UV Photometric	4	1
PM2.5	PM <2.5 um in diameter	Thermo Instruments	5030	E-515/3256	0-1000ug/m3	Synchronized Nephelometric/Radiometric Particulate Mass Monitor	4	1
СО	Carbon monoxide	Thermo Instruments	48i	1408761381	0-50 ppm	Absorption of infrared radiation	4	1
RH/Temp	Relative humidity / external temp	Vaisala	HMP155	G4340069	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
WS	Wind Speed<10um	Met One	010C-1	E5131	0-80kph	Chopped optical	10	
WD	Wind Direction	Met One	20C-1	NA	0-360 degrees	Resistive (potentiometer)	10	
VOC	Volatile Organic Compounds	Tisch	TE-123	1029	NA	Canister sampler	4	
РАН	Polycyclic aromatic hydrocarbons	Tisch	TE PUF+BL	1001057	NA	Filter/ Canister sampler	2	
PM 2.5 A	Partisol sampler. Integrated	Thermo Instruments	2000i	20001204331312	NA	Cartridge filter	2	

	sampling.							
PM2.5 B	Partisol sampler. Integrated sampling.	Thermo Instruments	2000i	20001203611305	NA	Cartridge filter	2	
PM 10 A	Partisol sampler. Integrated sampling.	Thermo Instruments	2000i	20001203551305	NA	Cartridge filter	2	
PM 10 B	Partisol sampler. Integrated sampling.	Thermo Instruments	2000i	20001203821308	NA	Cartridge filter	2	

Table 4.0 - Analytical Equipment in AMS 07

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	556A
ZAG	Zero Air Generator	Teledyne API	T701	1864
ZAG	Zero Air Generator	Teledyne API	701H	586
HVAC	Air Conditioner/Heater .Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring trailer	ITB	NA	NA
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Thermo Instruments	SABIO 4010	11021107

Table 5.0 - Support Equipment in AMS 07

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2012-2016

Wind Speed (WS) - km/h Athabasca Valley (AMS 7)

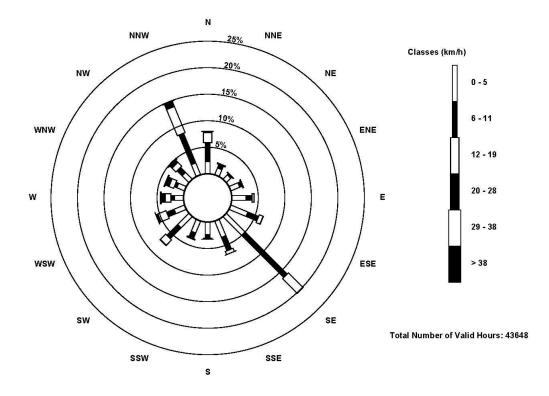


Figure 5.0 – AMS 07 Five Year Wind Rose

Figure 6.0 - Plan View Sketch showing 500m radius around Athabasca Valley station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 08 – Fort Chipewyan

Table of Contents

Network Background	3
AMS 08 – Fort Chipewyan Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	15

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	.4
Figure 1.0 – WBEA Monitoring Network Sites	. 5
Table 2.0 – General Site Information	.6
Table 3.0 – Local Source Information	.6
Figure 2.0 – Area Topographic map showing AMS 08 – Fort Chipewyan Station	.7
Figure 3.0 – Aerial photo showing AMS 08 – Fort Chipewyan Station	. 8
Figure 4.0 – Exterior of monitoring station	.9
Figure 4.1 – Environ looking north	.9
Figure 4.2 – Environ looking east	10
Figure 4.3 – Environ looking south1	10
Figure 4.4 – Environ looking west 1	11
Figure 4.5 –Indoor Sample Manifold and Outdoor sample Inlet1	11
Figure 4.6 – East Rack (on the left) & West Rack1	12
Table 4.0 - Analytical Equipment in AMS 081	13
Table 5.0 - Support Equipment in AMS 081	14
Figure 5.0 – AMS 08 Five Year Wind Rose1	15
Figure 6.0 – Plan View Sketch showing 500m radius around Fort Chipewyan station1	16

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

	WBEA AMBIENT AIR MONITORING NETWORK																																		
	WBEA Program - X											Enhanced Deposition Program - X																							
	CONTINUOUS MONITORED								ED P/													INTEGRATED SAMPLING													
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	O 3	NOx	NO	NO ₂	NH 3	ю	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Cali	b WS	WD	WWS	AT	RH	GR	SW	BP	PRECIP	EC/O	SASS	Dichot	PMLo	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	X		Х	X	X	X	Х	Х		X	Х	X	X	X	X	X	X	X		X	X	Х	X		Х	X	X	X	Х	X	XX	XX	XX
Mildred Lake	2	Compliance	X	Х									X					X	X	X		X	X												
Lower Camp	3	Meteorological																	X	Х	X	X	X												
Buffalo Viewpoint	4	Compliance	Х	Х									X					X	X	Х		X	X												
Mannix	5	Compliance/Meteorological	X	Х									X					X	X	X	X	X	X									X		X	X
Patricia McInnes	6	Health	X		X	X	Х	X	Х	Х		X	X	X	X			X	X	Х		X	Х				Х				Х	X	Х	х	X
Athabasca Valley	7	Health	Х		Х	X	Х	X	Х		Х	X	X	X	X			X	X	Х		X	X			Х					Х	X	Х	X	X
Fort Chipewyan	8	Background/Health	X			X	Х	X	Х			X						X	X	X		X	X	Х	X		X								
Barge Landing	9	Attribution			X								Х					X	X	X		X	X			Х							Х		
Lower Camp B	11	Compliance	Х	X									X					X	X	Х		X	X									X		X	X
Fort McKay South	13	Attribution	Х		Х	X	X	Х	Х			X	X					X	X	Х		X	X								Х	X	Х	X	X
Anzac	14	Attribution	X		X	X	Х	X	X			X	X	X	X			X	X	X		X	X	Х	X		X				X	X	Х	Х	
CNRL - Horizon	15	Compliance	X		X		Х	X	X			X	X					X	X	Х		X	X	Х			Х				Х		Х		
Shell Muskeg River	16	Compliance	X				Х	X	X			X	Х					X	X	Х		X	X			Х					Х				
Wapasu Creek	17	Compliance	X	X		X	Х	X	Х			X	X					X	X	X	х	X	X				X			X				X	X
Ćonklin	18	Background	X		X	X	Х	X	X			X	X	X	X	X		X	X	X		X	X	Х	X		X		X	X			X	X	X
Suncor Firebag	19	Compliance	X	X			X	X	Х				X					X	X	X		X	X												
Brion Energy	20	Compliance	Х	Х			Х	X	Х				X					X	X	Х		X	X				Х								
Će novus Christi na Lake	500	Porta ble-Compliance	X	X		X	Х	X	Х			X						X	X	Х		X	Х												
Stat Oil Leismer	501	Porta ble-Compliance	X	X			X	X	X									X	X	Х		X	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	X	X			X	X	X									X	X	Х		X	X												
HEMP	104	Portable-He alth			X								X	X	X			X	X	X		X	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

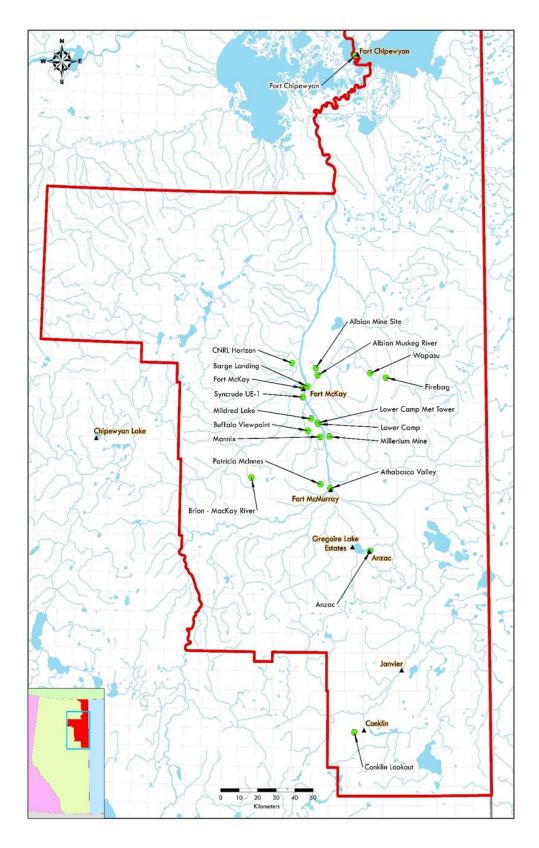


Figure 1.0 - WBEA Monitoring Network Sites

AMS 08 - Fort Chipewyan Station Details

General Site Information

The Fort Chipewyan Station overlooks Lake Athabasca on the outskirts of Fort Chipewyan. This station was constructed during the summer of 1998.

The Fort Chipewyan Station contains analyzers that continuously measure SO2, O3, NO, NO2, NOx, PM2.5, wind speed and direction, temperature, global radiation, leaf wetness, and humidity.

Item	Description												
Station ID	AMS 08												
Station Name	Fort Chipewyan												
General description	Station is located a Athabasca.	at the west end of	Fort Chipewyan, on a	hill overlooking Lake									
Community	Fort McMurray												
Station Coordinates	58°42'33.25"	North	111°10'29.98"	West									
Station elevation	221			Meters									
Station Address	NA												
Station Type	Background/Healt	h											
Initial Commission Date	NA												
Area Land Use	Residential												
Angle of elevation to nearby buildings	5 degrees												
Average building height in area	20 ft.												
Airflow Restrictions	North	no	East	No									
(yes/no)	South	no	West	No									
Nearest Tree	Distance	25 meters	Height	5 meters									
Sample Manifold Type	Glass												
Meteorological Tower	Height	10 meters											
Information	Туре	Aluma crank-up	tower										
	Position	Attached to No	rth end of monitoring s	shelter									
Station Install Date	NA												
Station Origin	Purchased new												
Site Preparation	Level gravel pad												

Table 2.0 – General Site Information

Localized Sources

Туре	Dis	stance		Description							
House	60	m		Truck idling. Emissions from wood stove.							
Name	Туре	Traffic Volume	Distand	ce (m)	Description						
Roadways	Gravel road	Low	200		Residential access road.						

Table 3.0 – Local Source Information

Area Topographic Map

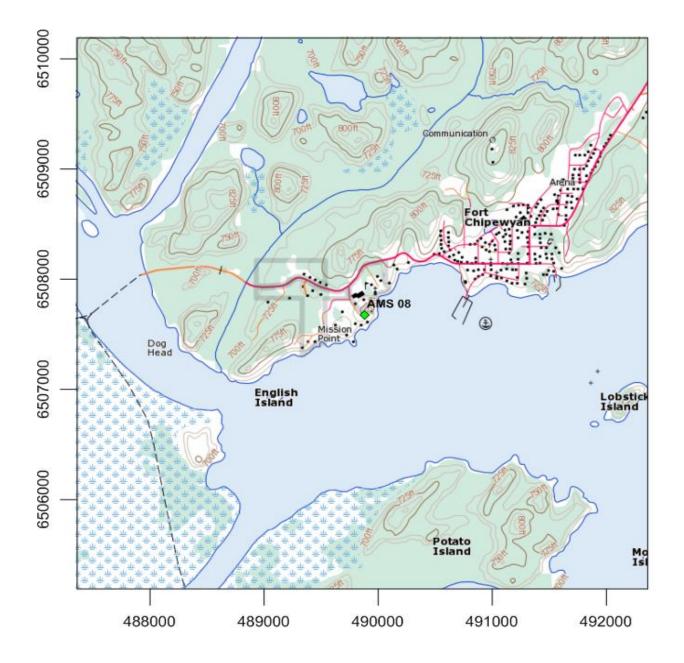


Figure 2.0 – Area Topographic map showing AMS 08 – Fort Chipewyan Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 08 – Fort Chipewyan Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Environ looking north

Figure 4.2 – Environ looking east

Figure 4.3 - Environ looking south

Figure 4.4 - Environ looking west

Figure 4.5 –Indoor Sample Manifold and Outdoor sample Inlet

Figure 4.6 – East Rack (on the left) & West Rack

Equipment Inventory

Davra	water Managerad	Maka	Madal		Demos	Datastian Drinsinla	Sampling	Height (m)
Para	meter Measured	Make	Model	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulphur Dioxide	Thermo Instruments	43-TLE	1136451241	0-100ppb	Pulsed Fluorescence	4	1
NOx	Nitrogen Dioxide	Teledyne API	T200U	172	0-100ppb	Chemiluminescence	4	1
O3	Ozone	Teledyne API	T400	1020	0-500 ppb	UV Photometric	4	1
PM2.5	PM <2.5 um in diameter	Thermo Instruments	5030	E2025	0-1000ug/m3	Synchronized Nephelometric/Radiometric Particulate Mass Monitor	4	1
AT/RH	Ambient Temp/Relative Humidity	Vaisala	HMP155	J2310017	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
WS	Wind Speed<10um	Met One	010C-1	E5131	0-80kph	Chopped optical	10	
WD	Wind Direction	Met One	20C-1	NA	0-360 degrees	Resistive (potentiometer)	10	
PC	Precip tipping bucket	Met One	8" rain gauge 0.01"		NA			
GR	Global radiation	Met one						
LW	Leaf wetness	Decagon Devices LWS						

Table 4.0 - Analytical Equipment in AMS 08

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	11039
ZAG	Zero Air Generator	Teledyne API	M701	4698
HVAC	Air Conditioner/Heater .Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring trailer	ITB	NA	13 15920
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	T700	747

Table 5.0 - Support Equipment in AMS 08

Wind Speed (WS) - km/h

Fort Chipewyan (AMS 8)

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2012-2016

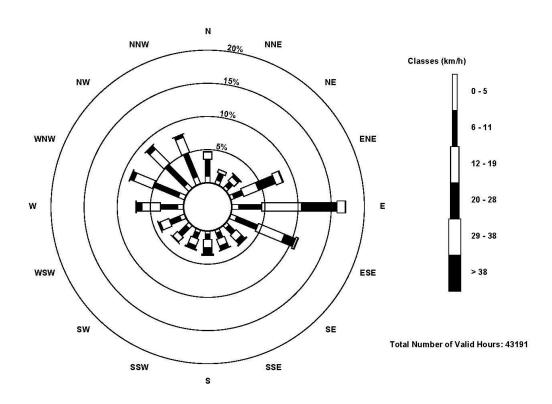


Figure 5.0 – AMS 08 Five Year Wind Rose

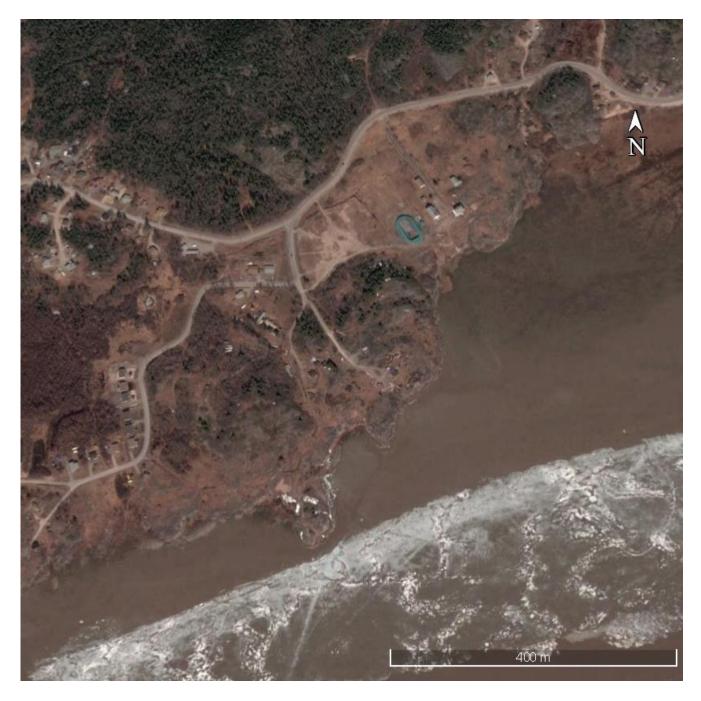


Figure 6.0 – Plan View Sketch showing 500m radius around Fort Chipewyan station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 09 – Barge Landing

2017

Table of Contents

Network Background	3
AMS 09 – Barge Landing Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	14

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	.4
Figure 1.0 – WBEA Monitoring Network Sites	. 5
Table 2.0 – General Site Information	.6
Table 3.0 – Local Source Information	.6
Figure 2.0 – Area Topographic map showing AMS 09 – Barge Landing Station	.7
Figure 4.0 – Exterior of monitoring station	.9
Figure 4.1 – Environ looking north	.9
Figure 4.2 – Environ looking east	10
Figure 4.3 – Environ looking south	10
Figure 4.4 – Environ looking west	11
Figure 4.5 –Indoor Sample manifold and outdoor sample inlet	11
Figure 4.6 – Instrumentation rack	12
Table 4.0 - Analytical Equipment in AMS 09	
Table 5.0 - Support Equipment in AMS 09	
Figure 5.0 – AMS 09 Five Year Wind Rose	14
Figure 6.0 – Plan View Sketch showing 500m radius around Barge Landing station	15

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oil Sands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	AI	RM	I Ó N	NIT(ÓR	INC	δN	ETV	VŌ	RK					_		_							
		WBEA Program	m - X																	Er	hand	ed D	epos	ition	Prog	gram	- X								
					(CONT	INUC)US N	/ONI	TOR	ED PA	RAN	RAMETERS													INTEGRATED SAMPLING									
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	O 3	NOx	NO	NO ₂	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLo	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	X		X	X	X	X	X	X		X	X	X	X	X	X	X	X	X		X	X	X	X		Х	Х	X	X	X	X	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					Х	Х	X		X	X												
Lower Camp	3	Meteorological																	X	X	X	X	X												
Buffalo Viewpoint	4	Compliance	Х	Х									Х					Х	Х	Х		X	Х												
Mannix	5	Compliance/Meteorological	X	X									X					X	Х	X	X	X	X									X		X	X
Patricia McInnes	6	Health	Х		Х	Х	Х	X	X	Х		X	Х	Х	Х			Х	Х	X		X	X				Х				Х	X	X	X	Х
Athabasca Valley	7	Health	X		X	X	X	X	X		X	X	X	X	X			X	Х	X		X	X			X					X	X	X	X	X
Fort Chipewyan	8	Background/Health	X			X	X	X	X			X						Х	Х	X		X	X	X	X		Х								
Barge Landing	9	Attribution			X								X					Х	X	X		X	X			X							X		
Lower Camp B	11	Compliance	Х	Х									Х					Х	Х	X		X	X									X		X	X
Fort McKay South	13	Attribution	X		X	X	X	X	X			X	X					X	Х	X		X	X								X	X	X	X	X
Anzac	14	Attribution	Х		Х	X	Х	X	Х			X	X	Х	Х			Х	Х	X		X	X	X	X		Х				X	X	X	X	
ĆNRL - Horizon	15	Compliance	X		X		X	X	X			X	X					X	Х	X		X	X	X			X				X		X		
Shell Muskeg River	16	Compliance	X				Х	X	X			X	Х					Х	Х	X		X	X			X					Х				
Wapasu Creek	17	Compliance	X	X		X	X	X	X			X	X					X	Х	X	X	X	X				X			X				X	X
Conklin	18	Background	Х		Х	Х	Х	X	Х			X	Х	Х	Х	X		Х	Х	Х		X	X	X	X		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	X	Х			X	X	X				X					X	Х	X		X	X												
Brion Energy	20	Compliance	X	Х			X	X	Х				X					Х	Х	X		X	X				X								
Cenovus Christina Lake	500	Porta ble-Compliance	X	X		X	X	X	X			X						Х	Х	X		X	X												
Stat Oil Leismer	501	Porta ble-Compliance	X	Х			Х	X	Х									Х	Х	X		X	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	X			Х	X	X									Х	Х	X		X	X												
HEMP	104	Porta ble-He alth			X								X	X	X			X	Х	X		X	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

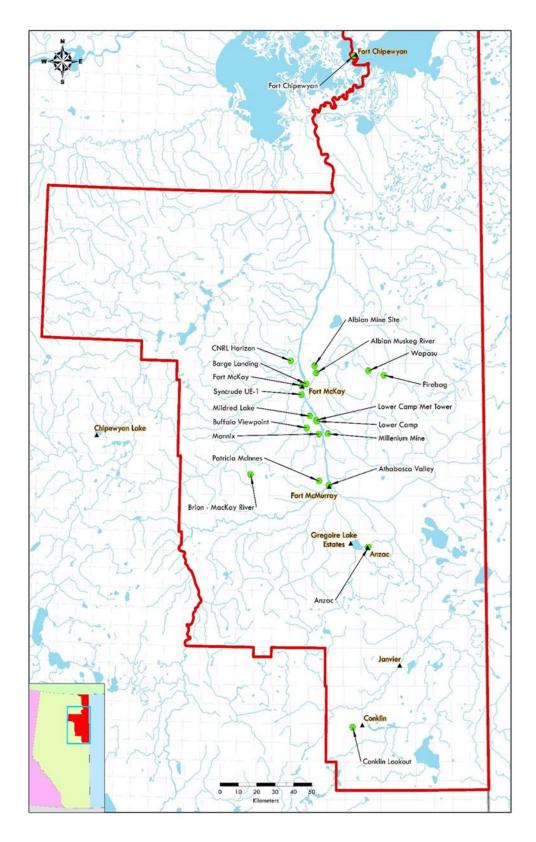


Figure 1.0 - WBEA Monitoring Network Sites

AMS 09 - Barge Landing Station Details

General Site Information

The Barge Landing Station is located on the Barge Road off of Highway 63 North of Fort McKay. This station was built as an Albian Sands Energy Ltd. station and donated to the WBEA in 2001.

Item	Description				
Station ID	AMS 09				
Station Name	Barge Landing				
General description		Barge Lar	nding road, app	roximately 300 m eas	st of the Barge
	Landing lodge.				
Community	NA				
Station Coordinates	57°11'53.47"		North	111°35'58.35"	West
Station elevation	282				Meters
Station Address	NA				
Station Type	Attribution				
Initial Commission Date	NA				
Area Land Use	Industrial.				
Angle of elevation to nearby	NA				
buildings					
Average building height in	NA				
area					
Airflow Restrictions	North	no		East	No
(yes/no)	South	no		West	No
Nearest Tree	Distance		36 meters	Height	10 meters
Sample Manifold Type	Glass				
Meteorological Tower	Height	10 m	eters		
Information	Туре	Alum	a crank-up tow	ver	
	Position	Attac	ched to North e	nd of monitoring she	lter
Station Install Date	2001				
Station Origin	Donated by Shell	Albian Sar	nds		
Site Preparation	Level gravel pad				

Table 2.0 – General Site Information

Localized Sources

Туре		Distan	ce	Description	ription						
Camp site		300 to	West		Workers camp	site.					
Name	Туре		Traffic Volume	Distan	ce (m)	Description					
Roadway	Station access		Very low	70 met	ers	Dirt road					
Highway 63	Asphalt		Medium	400 m	eters	Highway					

Table 3.0 – Local Source Information

Area Topographic Map

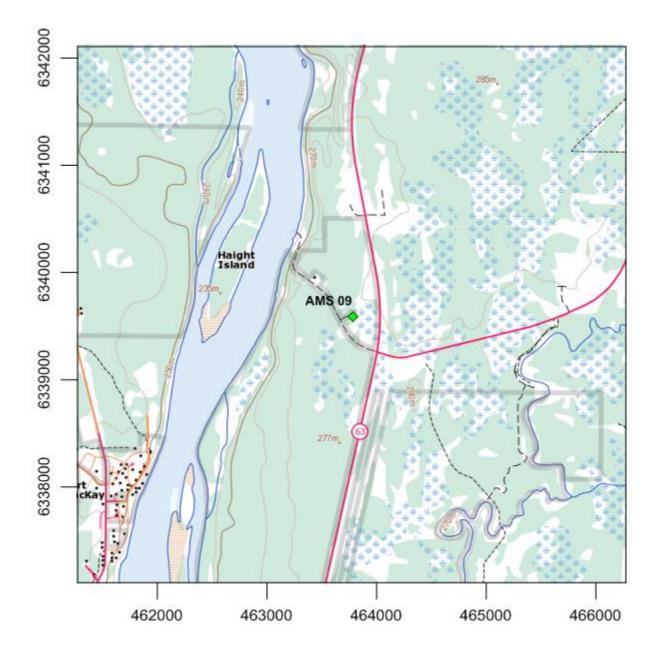


Figure 2.0 – Area Topographic map showing AMS 09 – Barge Landing Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 09 – Barge Landing Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Environ looking north

Figure 4.2 – Environ looking east

Figure 4.3 – Environ looking south

Figure 4.4 - Environ looking west

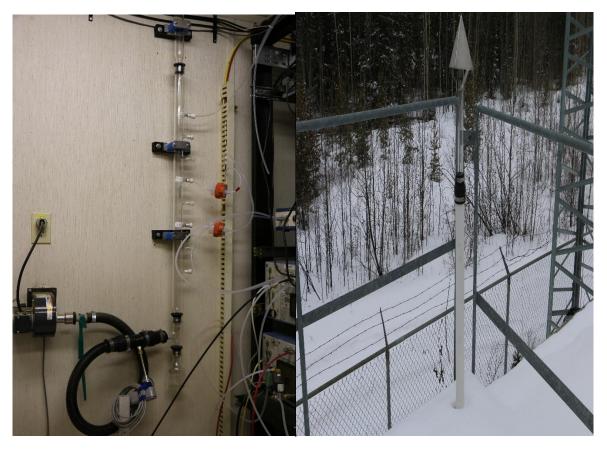


Figure 4.5 –Indoor Sample manifold and outdoor sample inlet

Figure 4.6 – Instrumentation rack

Equipment Inventory

Paramet	er Measured	Make	Model	Serial Number	Range	Detection	Samplin (n	g Height n)
				Number		Principle	Ground	Shelter
TRS	Total Reduced Sulfurs	Thermo Instruments	43i-TLE	1331259320	0- 100ppb	Pulsed Fluorescence	4	1
тнс	Total Hydrocarbons	Thermo Instruments	51i-LT	1327059296	0- 50ppm	Gas Chromatography and Flame Ionization	4	1
Temp/RH	External temp and relative humidity.	Vaisala	HMP155	NA	Temp: - 80 - +60 C RH: 0- 100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
WS	Wind speed	Met One	010C-1	B4128	0-80kph	Chopped optical	10	
WD	Wind direction	Met One	20C-1	E4852	0-360 degrees	Resistive (potentiometer)	10	
VOC	Volatile organic compounds. Integrated sampling.	Tisch Environmental	TE-123	1027	NA	Canister sampler	4	1

Table 4.0 - Analytical Equipment in AMS 09

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	5564
ZAG	Zero Air Generator	Teledyne API	T701	4888
HVAC	Heating and Air Conditioning system. Wall mount unit	NA	NA	NA
Shelter / Building	Air monitoring trailer	National trailer	NA	2N9MMFY3615
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Thermo Instruments	SABIO 4010	11071107

Table 5.0 - Support Equipment in AMS 09

Wind Speed (WS) - km/h

Barge Landing (AMS 9)

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2012-2016

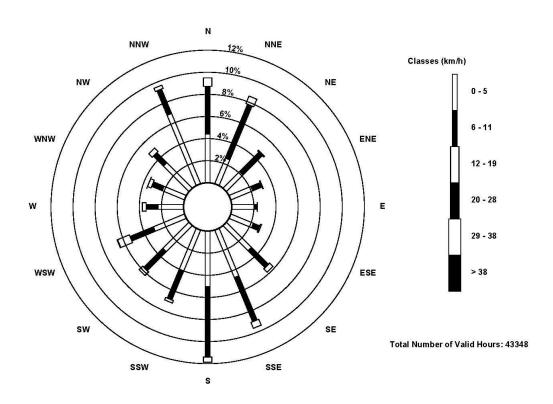


Figure 5.0 – AMS 09 Five Year Wind Rose

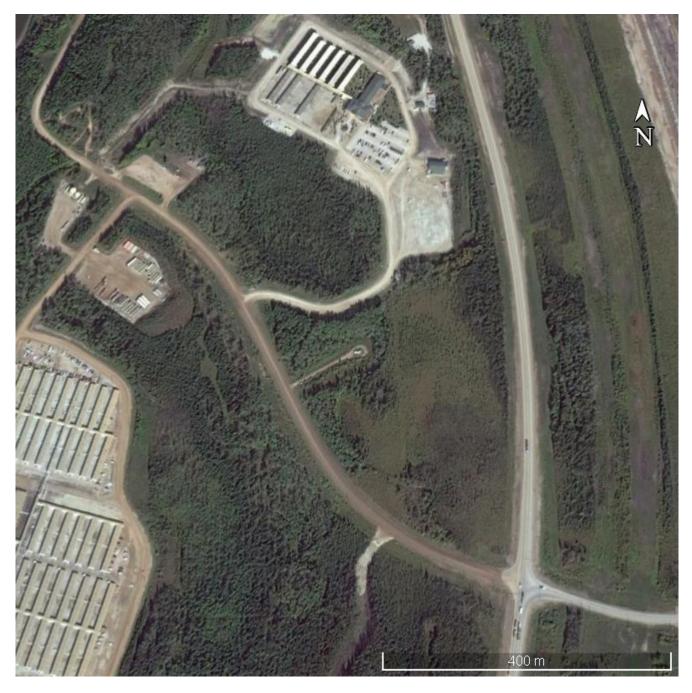


Figure 6.0 – Plan View Sketch showing 500m radius around Barge Landing station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 11 – Lower Camp

Table of Contents

Network Background	3
AMS 11 – Lower Camp Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	15

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	.4
Figure 1.0 – WBEA Monitoring Network Sites	.5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 11 – Lower Camp Station	7
Figure 3.0 – Aerial photo showing AMS 11 – Lower Camp Station	. 8
Figure 4.0 – Exterior of monitoring station	9
Figure 4.1 – Sampling Deck which contains EC PM2.5 & High Volume PAH Sampler	9
Figure 4.2 – Environ looking north	10
Figure 4.3 – Environ looking east	10
Figure 4.4 – Environ looking south	11
Figure 4.5 – Environ looking west	11
Figure 4.6 – Outdoor Sample Inlet & Indoor Sample Manifold	12
Figure 4.7 – Instrument racks	12
Table 4.0 - Analytical Equipment in AMS 11	13
Table 5.0 - Support Equipment in AMS 11	14
Figure 5.0 – AMS 11 Five Year Wind Rose	15
Figure 6.0 – Plan View Sketch showing 500m radius around Lower Camp station	16

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO₂, H₂S, TRS, O₃, NO_x, NO, NO₂, NH₃, CO, PM_{2.5}, THC, NMHC, and CH₄. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO₂, H₂S, O₃, NO_x, NO, NO₂, NH₃, PM_{2.5}, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM_{2.5}, PM₁₀, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oil Sands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	All	RM	I Ó N	NIT(ÓR	INC	δN	ETV	VŌ	RK					_		_							
		WBEA Program	m - X																	Er	hand	ed D	epos	ition	Prog	gram	- X								
					(ONT	INUC	US N	/ONI	TOR	ED P A	RAN	RAMETERS													INTEGRATED SAMPLING									
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	Ô3	NOx	NO	NO ₂	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLO	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	X		Х	Х	X	X	X	X		X	X	X	X	X	X	X	X	X		X	X	X	X		X	Х	X	X	X	X	XX	XX	XX
Mildred Lake	2	Compliance	X	X									X					Х	х	X		X	X												
Lower Camp	3	Meteorological																	X	X	X	X	X												
Buffalo Viewpoint	4	Compliance	X	X									X					Х	Х	X		X	X												
Mannix	5	Compliance/Meteorological	X	X									X					Х	Х	X	X	X	X									X		X	X
Patricia McInnes	6	Health	X		Х	Х	Х	Х	X	Х		X	Х	X	X			Х	Х	X		Х	X				Х				Х	X	X	X	X
Athabasca Valley	7	Health	X		Х	Х	X	X	X		X	X	X	X	X			X	Х	X		X	X			X					X	X	X	X	X
Fort Chipewyan	8	Background/Health	X			Х	X	X	Х			X						Х	Х	X		X	X	X	Х		Х								
Barge Landing	9	Attribution			X								X					X	Х	X		X	X			X							X		
Lower Camp B	11	Compliance	Х	Х									X					Х	Х	X		X	X									X		X	X
Fort McKay South	13	Attribution	X		X	X	X	X	X			X	X					X	Х	X		X	X								X	X	X	X	X
Anzac	14	Attribution	Х		Х	Х	X	X	Х			X	Х	Х	Х			Х	Х	X		X	X	X	Х		Х				X	X	X	X	
ĆNRL - Horizon	15	Compliance	X		Х		X	X	X			X	X					X	Х	X		X	X	X			X				X		X		
Shell Muskeg River	16	Compliance	X				X	Х	X			X	Х					Х	Х	X		X	X			X					Х				
Wapasu Creek	17	Compliance	X	X		Х	X	X	X			X	X					X	Х	X	X	X	X				X			X				X	X
Conklin	18	Background	Х		Х	Х	X	Х	Х			X	Х	Х	Х	X		Х	Х	X		X	X	X	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	X	X			X	X	X				X					X	Х	X		X	X												
Brion Energy	20	Compliance	X	X			X	Х	Х				X					Х	Х	X		X	X				Х								
Cenovus Christina Lake	500	Porta ble-Compliance	Х	X		Х	X	X	X			X						Х	X	X		X	X												
Stat Oil Leismer	501	Porta ble-Compliance	Х	Х			X	X	Х									Х	Х	X		X	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	X			X	Х	Х									Х	Х	X		X	X												
HEMP	104	Porta ble-He alth			Х								X	X	X			X	Х	X		X	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

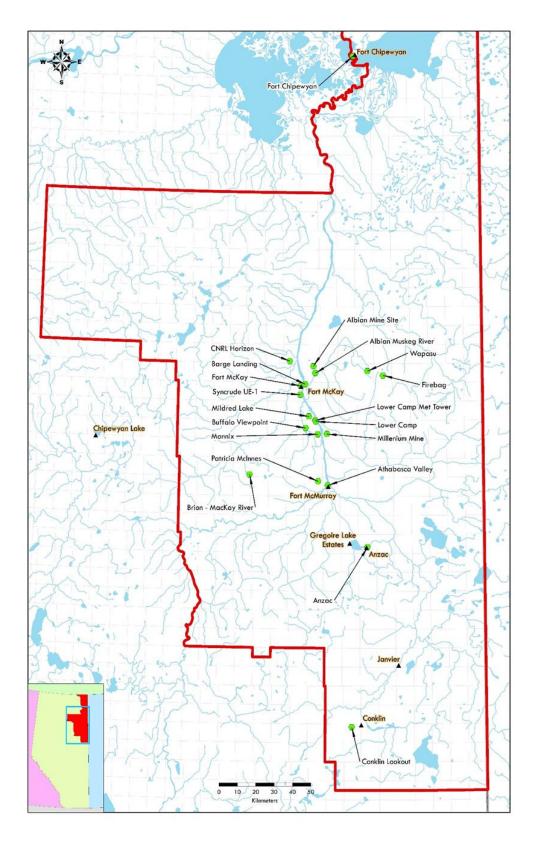


Figure 1.0 - WBEA Monitoring Network Sites

AMS 11 – Lower Camp Station Details

General Site Information

The Lower Camp station was installed as a Compliance Station. It situated by the Athabasca River Valley, North of Suncor and East of Syncrude. The station was established September 14, 2000.

Item	Description							
Station ID	AMS 11							
Station Name	Lower Camp							
General description	Located by the Athabasca River Valley at about 115 meters south of the S							
	pump house.							
Community	NA							
Station Coordinates	57° 1'36.45"		North	111°30'2.95"		West		
Station elevation	235	235 Meters						
Station Address	NA							
Station Type	Compliance							
Initial Commission Date	NA							
Area Land Use	Oil sands lease							
Angle of elevation to nearby	0 degrees							
buildings								
Average building height in	NA							
area								
Airflow Restrictions	North	no East		No	No			
(yes/no)	South	no		West	No			
Nearest Tree	Distance		3 meters	Height		4 meters		
Sample Manifold Type	Glass							
Meteorological Tower	Height 10 meters							
Information	Туре	Aluma crank-up tower						
	Position	Attached to North end of monitoring shelter						
Station Install Date	NA							
Station Origin	Purchased new							
Site Preparation	Level gravel pad							

Table 2.0 – General Site Information

Localized Sources

Туре		Distance			Description		
Laydown		79.21m W			Equipment Laydown		
Water Pond	136.86m NW			Reservoir			
Athabasca River	33.8m E			River			
Pumping Station		114m N			Syncrude Water Pump Station		
Deck		4m E			Has Precipitation, PM2.5, and PUF Samplers on it		
Name	Туре	-	Traffic Volume	Dista	nce (m)	Description	
Gravel Road	Gravel		Low	20m		Road Access to Lay down and pumping station	

Table 3.0 – Local Source Information

Area Topographic Map

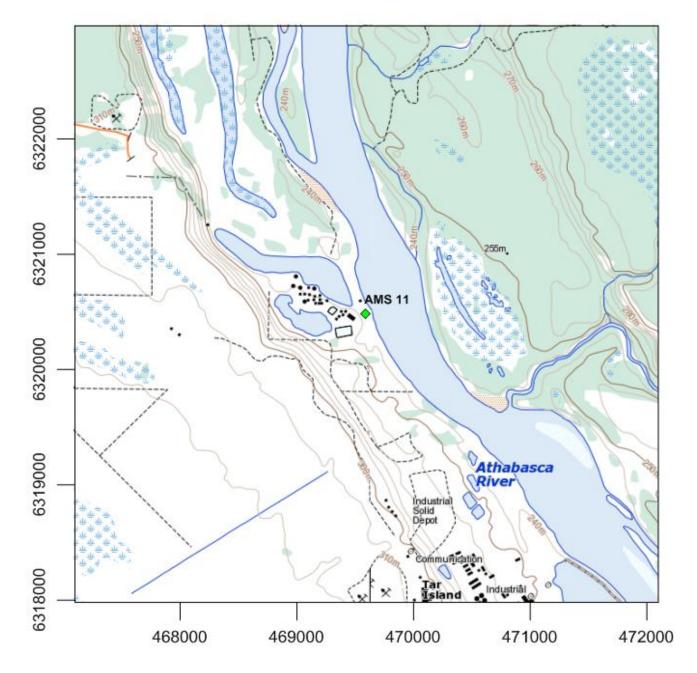


Figure 2.0 – Area Topographic map showing AMS 11 – Lower Camp Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 11 – Lower Camp Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Sampling Deck which contains EC PM2.5 & High Volume PAH Sampler

Figure 4.2 – Environ looking north

Figure 4.3 – Environ looking east

Figure 4.4 - Environ looking south

Figure 4.5 - Environ looking west

Figure 4.6 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.7 – Instrument racks

Equipment Inventory

Parameter Measured		Make	N A a a b	Control Number	D	Data ati an Drin sin la	Sampling Height (m)	
		маке	Model	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulfur Dioxide	Thermo Instruments	43i	100841398	0-1000ppb	Pulsed Fluorescence	4	1
H2S	Hydrogen Sulfide	Thermo Instruments	450i	1410661328	0-100ppb	Pulsed Fluorescence	4	1
тнс	Total Hydrocarbons	Thermo Instruments	51i-LT	1218153353	0-50ppm	Gas Chromatography and Flame Ionization	4	1
AT/RH	Ambient temp and relative humidity.	Vaisala	HMP155	K2510020	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
VS	Visibility sensor	Vaisala	PWD22	H5030008	0-20 km			
WS	Wind speed	Met One	010C-1	P19838	0-80kph	Chopped optical	10	
WD	Wind direction	Met One	20C-1	P19941	0-360 degrees	Resistive (potentiometer)	10	
EC PM 2.5	Integrated sampling	Thermo Instruments	2000i	20001W206011510	NA	Filter sampler	2	
EC PAH	Polycyclic aromatic hydrocarbons	Tisch Environmental	TE-303	1549	NA	Filter/ canister sampler		
	hydrocarbons	Environmental					sampler	sampler

Table 4.0 - Analytical Equipment in AMS 11

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	2403
ZAG	Zero Air Generator	Teledyne API	T701	3411
HVAC	Heating and Air Conditioning system. Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring trailer	C & V Shelters	OFFICE	SBB81409
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Thermo Instruments	SABIO 4010	11051107

Table 5.0 - Support Equipment in AMS 11

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2012-2016

Wind Speed (WS) - km/h Lower Camp (AMS 11)

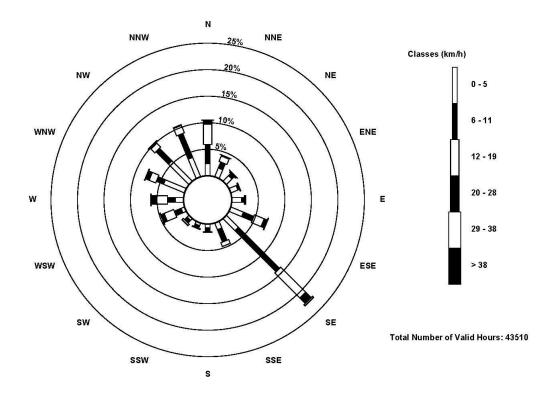


Figure 5.0 – AMS 11 Five Year Wind Rose

Figure 6.0 – Plan View Sketch showing 500m radius around Lower Camp station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 13 – Fort McKay South

2017

Table of Contents

Network Background	3
AMS 13 – Fort McKay South Station Details	6
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	15

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 13 – Fort McKay South Station	7
Figure 3.0 – Aerial photo showing AMS 13 – Fort McKay South Station	8
Figure 4.0 – Exterior of monitoring station	
Figure 4.1 – Environ looking north	
-Figure 4.2 – Environ looking east1	.0
Figure 4.3 – Environ looking south1	.0
Figure 4.4 –Environ looking west1	.1
Figure 4.5 – Outdoor Sample Inlet & Indoor Sample Manifold1	.1
Figure 4.6 – Instrument racks1	.2
Figure 4.7 – PM 10, Integrated Partisol samplers1	.2
Table 4.0 - Analytical Equipment in AMS 131	.3
Table 5.0 - Support Equipment in AMS 131	.4
Figure 5.0 – AMS 13 Five Year Wind Rose1	.5
Figure 6.0 – Plan View Sketch	.6

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO₂, H₂S, TRS, O₃, NO_x, NO, NO₂, NH₃, CO, PM_{2.5}, THC, NMHC, and CH₄. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO₂, H₂S, O₃, NO_x, NO, NO₂, NH₃, PM_{2.5}, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM_{2.5}, PM₁₀, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oil Sands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	١M	BIE	NT	All	RM	O	IIT	ÓR	INC	δN	ETV	NŌ	RK	WBEA AMBIENT AIR MONITORING NETWORK													
		WBEA Program	m - X																	Er	nhano	ed D	epos	ition	Prog	ram	- X								
					(CONT	INUC	DUS I	//ON	TOR	ED P A	ARAN	IETER	S															IN	TEGR	ATE	DSAM	NPLI	NG	
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	O 3	NOx	NO	NO ₂	NH 3	co	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLO	PM _{2.5}	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		X	X	X	X	X	X		X	X	Х	Х	X	X	X	X	X		X	X	X	X		Х	X	X	X	Х	X	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									X					X	X	X		Х	X												
Lower Camp	3	Meteorological																	X	X	X	X	X												
Buffalo Viewpoint	4	Compliance	Х	Х									X					X	X	X		Х	X												
Mannix	5	Compliance/Meteorological	X	Х									X					X	X	X	X	Х	X									X		X	X
Patricia McInnes	6	Health	Х		X	X	X	X	X	X		X	X	X	X			X	X	X		Х	X				Х				Х	X	X	X	X
Athabasca Valley	7	Health	Х		X	X	X	X	X		X	X	X	X	X			X	X	X		X	X			Х					X	X	X	X	X
Fort Chipewyan	8	Background/He alth	Х			Х	X	X	X			X						X	X	X		Х	X	X	X		Х								
Barge Landing	9	Attribution			X								X					X	X	X		X	X			Х							X		
Lower Camp B	11	Compliance	Х	Х									X					X	Х	X		Х	X									X		X	X
Fort McKay South	13	Attribution	X		X	X	X	X	X			X	X					X	X	X		X	X								X	X	X	X	X
Anzac	14	Attribution	Х		Х	Х	X	X	X			X	Х	Х	Х			X	Х	X		Х	X	X	X		Х				Х	X	X	X	
CNRL - Horizon	15	Compliance	Х		X		X	X	X			X	X					X	X	X		X	X	X			X				X		X		
Shell Muskeg River	16	Compliance	Х				X	X	X			X	Х					Х	X	X		Х	X			Х					Х				
Wapasu Creek	17	Compliance	Х	Х		X	X	X	X			X	X					X	X	X	X	X	X				X			X				X	X
Conklin	18	Background	Х		X	Х	X	X	X			X	Х	Х	Х	X		Х	X	X		Х	X	X	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	Х			X	X	X				X					X	X	X		X	X												
Brion Energy	20	Compliance	Х	Х			X	X	X				X					X	X	X		Х	X				Х								
Cenovus Christina Lake	500	Porta ble-Compliance	Х	Х		X	X	X	X			X						X	X	X		Х	X												
Stat Oil Leismer	501	Porta ble-Compliance	Х	Х			X	X	X									X	X	X		Х	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	Х			X	X	X									X	X	X		Х	X												
HEMP	104	Porta ble-He alth			X								X	X	X			X	X	X		X	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

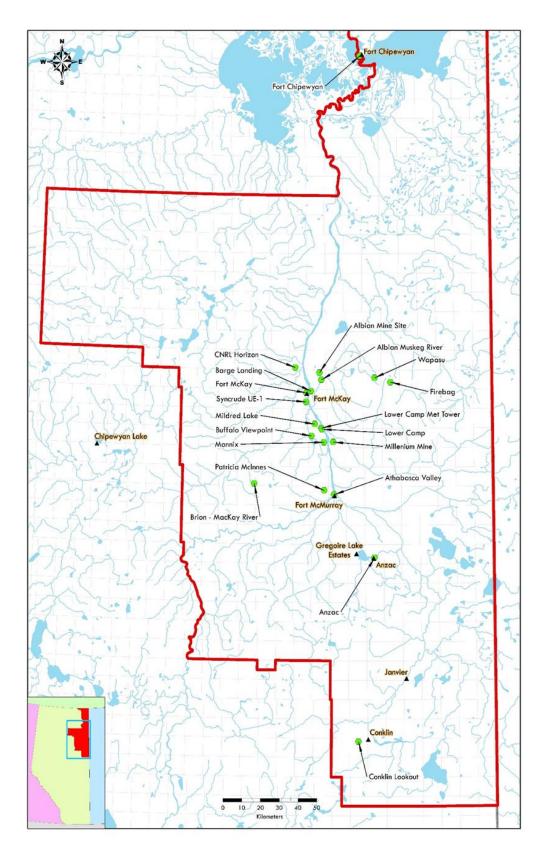


Figure 1.0 - WBEA Monitoring Network Sites

AMS 13 - Fort McKay South Station Details

General Site Information

The Fort McKay South Station is located between the community of Fort McKay and the Syncrude Canada mine site.

The Fort McKay South Station contains analyzers that continuously measure SO2, O3, TRS, THC, NO, NO2, NOX, PM 2.5, wind speed and direction, and temperature. Non-continuous measurement devices include VOCs and PM10.

Item	Description			
Station ID	AMS 13			
Station Name	Fort McKay South			
General description	Approximately 4k Base Mine	m south of Fort Mcl	Kay and approximately 6	km north of Syncrude
Community	Fort McKay			
Station Coordinates	57° 8'57.03"	North	111°38'32.44"	West
Station elevation	268			Meters
Station Address	NA			
Station Type	Attribution			
Initial Commission Date	NA			
Area Land Use	Crown land			
Angle of elevation to nearby buildings	0 degrees			
Average building height in area	NA			
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	5 meters	Height	6 meters
Sample Manifold Type	Glass	······		
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-u	p tower	
	Position	Attached to No	orth end of monitoring sh	nelter
Station Install Date	NA			
Station Origin	NA			
Site Preparation	Level gravel pad			

Table 2.0 General Site morni

Localized Sources

Туре		Distance		Description								
Air Monitoring station		3 meters N		Environment C	Canada Air Monitoring							
				compound.								
Name	Туре	Traffic Volume	Distan	ce (m)	Description							
Roadways	Access	Extremely low	5		Gravel/dirt road							

Table 3.0 – Local Source Information

Area Topographic Map

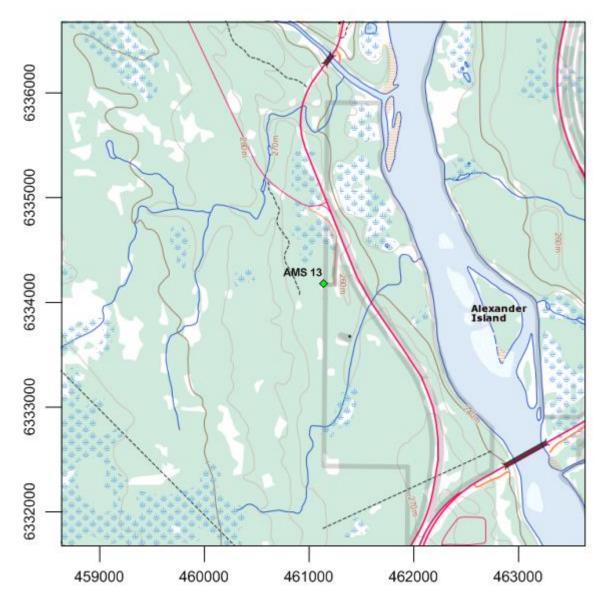


Figure 2.0 – Area Topographic map showing AMS 13 – Fort McKay South Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 13 – Fort McKay South Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Environ looking north

Figure 4.2 – Environ looking east

Figure 4.3 – Environ looking south

Figure 4.4 –Environ looking west

Figure 4.5 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.6 – Instrument racks

Figure 4.7 – PM 10, Integrated Partisol samplers

Equipment Inventory

Parameter Measured		N 4 - I	NA-d-l	Cardal Namehan	D	Data ati an Duinainta	Sampling	Height (m)		
Param	leter Measured	Make	Model	Serial Number	Range	Detection Principle	Ground	Shelter		
SO2	Sulphur Dioxide	Teledyne API	T100	599	0-1000ppb	Pulsed Fluorescence	4	1		
TRS	Total Reduced Sulfur	Thermo Instruments	43i-TLE	1218153359	0-100ppb	Pulsed Fluorescence	4	1		
TRS converter	Thermal oxidizer	CD Nova	CDN101	456	NA	Thermal Oxidizer paired with 43iTLE for TRS measurement				
NOx	Nitrogen Dioxide	Thermo Instruments	42i	1410661329	0-1000ppb	Chemiluminescence	4	1		
THC	Total Hydrocarbons	Thermo Instruments	51i-LT	1505164380	0-50ppm	Gas Chromatography and Flame Ionization	4	1		
03	Ozone	Teledyne API	T400	825	0-500 ppb	UV Photometric	4	1		
PM2.5	PM <2.5 um in diameter	Thermo Instruments	5030	E-773	0-1000ug/m3	Synchronized Nephelometric/Radiometric Particulate Mass Monitor	4	1		
RH/Temp	Relative humidity / external temp	Vaisala	HMP155	G4340047	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4			
WS	Wind Speed<10um	Met One	010C-1	N11127	0-80kph	Chopped optical	10			
WD	Wind Direction	Met One	20C-1	N13744	0-360 degrees	Resistive (potentiometer)	10			
voc	Volatile Organic Compounds	Tisch	TE-123	1023	NA		4			
PM10	Particulate matter. Integrated sampling.	Thermo Instruments	2000i	20001204911408	NA		2			
PM10	Particulate matter. Integrated sampling.	Thermo Instruments	2000i	20001204921408	NA		2			

Table 4.0 - Analytical Equipment in AMS 13

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	11038
ZAG	Zero Air Generator	Teledyne API	T701	5613
HVAC	Air Conditioner/Heater .Wall mount unit	NA	NA	NA
Shelter / Building	Air monitoring trailer	C & V Portable	Office	5201657
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Thermo Instruments	SABIO 4010	11041107

Table 5.0 - Support Equipment in AMS 13

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2012-2016

Wind Speed (WS) - km/h Fort McKay South (AMS 13)

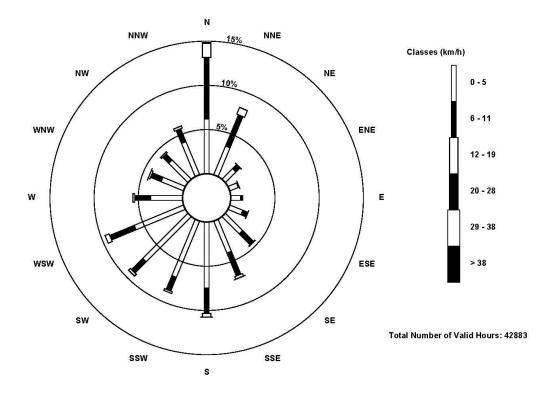


Figure 5.0 – AMS 13 Five Year Wind Rose

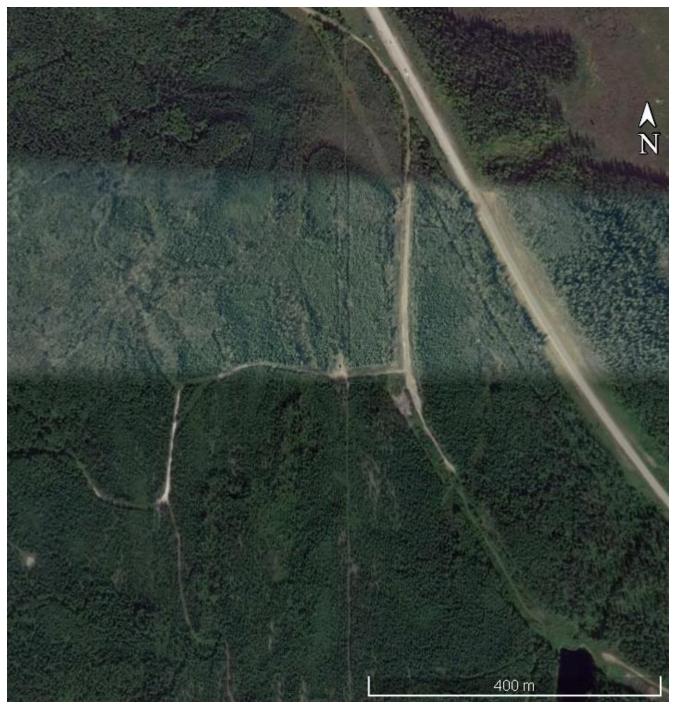


Figure 6.0 – Plan View Sketch showing 500m radius around Fort McKay South station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 14 – Anzac

2017

Table of Contents

Network Background	3
AMS 14 – Anzac Station Details	
General Site Information	6
Area Topographic Map	8
Aerial Photo	9
Site photos	
Equipment Inventory	
Wind Rose	17

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	7
Figure 2.0 – Area Topographic map showing AMS 14 – Anzac Station	8
Figure 3.0 – Aerial photo showing AMS 14 – Anzac Station	9
Figure 4.0 – Exterior of monitoring station	10
Figure 4.1 – Monitoring compound looking south	10
Figure 4.2 – Sampling Deck	11
Figure 4.3 – Environ looking north	11
Figure 4.4 – Environ looking east	12
Figure 4.5 – Environ looking south	12
Figure 4.6 – Environ looking west	13
Figure 4.7 – Outdoor Sample Inlet & Indoor Sample Manifold	13
Figure 4.8 –Instrument Rack	
Table 4.0 - Analytical Equipment in AMS 14	16
Table 5.0 - Support Equipment in AMS 14	16
Figure 5.0 – AMS 14 Five Year Wind Rose	17
Figure 6.0 – Plan view sketch showing a 500m radius around Anzac Station	18

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO₂, H₂S, TRS, O₃, NO_x, NO, NO₂, NH₃, CO, PM_{2.5}, THC, NMHC, and CH₄. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO₂, H₂S, O₃, NO_x, NO, NO₂, NH₃, PM_{2.5}, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM_{2.5}, PM₁₀, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oil Sands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

	WBEA AMBIENT AIR MONITORING NETWORK																																		
		WBEA Program	n - X																	Er	nhand	ed D	epos	ition	Prog	gram	- X								
	CONTINUOUS MONITORED PARAMETERS													ARAMETERS INTEGRATED SAMPLING																					
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	O 3	NOx	NO	NO2	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLO	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		X	X	X	X	X	X		X	X	Х	X	X	X	X	X	X		X	X	Х	X		Х	X	X	X	Х	X	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					X	X	X		Х	X												
Lower Camp	3	Meteorological																	X	X	X	X	X												
Buffalo Viewpoint	4	Compliance	Х	X									Х					Х	X	X		Х	X												
Mannix	5	Compliance/Meteorological	Х	X									X					X	X	X	X	X	X									X		X	X
Patricia McInnes	6	Health	Х		Х	Х	X	X	Х	X		X	Х	Х	Х			Х	X	X		Х	X				Х				Х	X	X	Х	X
Athabasca Valley	7	Health	Х		X	X	X	X	X		X	X	X	X	X			X	X	X		X	X			X					X	X	X	X	X
Fort Chipewyan	8	Background/Health	Х			X	X	X	X			X						X	X	X		Х	X	Х	Х		Х								
Barge Landing	9	Attribution			X								X					X	X	X		X	X			Х							X		
Lower Camp B	11	Compliance	Х	Х									Х					X	Х	X		Х	X									X		X	X
Fort McKay South	13	Attribution	Х		X	X	X	X	X			X	X					X	X	X		X	X								X	X	X	X	X
Anzac	14	Attribution	Х		Х	Х	Х	X	Х			X	Х	Х	Х			X	Х	X		Х	X	X	Х		Х				Х	X	X	X	
ĆNRL - Horizon	15	Compliance	Х		X		X	X	X			X	X					X	X	X		X	X	X			X				X		X		
Shell Muskeg River	16	Compliance	Х				X	X	Х			X	Х					Х	X	X		Х	X			Х					Х				
Wapasu Creek	17	Compliance	Х	X		X	X	X	X			X	X					X	X	X	X	X	X				X			X				X	X
Conklin	18	Background	Х		Х	Х	X	X	Х			X	Х	Х	Х	X		Х	X	X		Х	X	Х	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	X			X	X	X				X					X	X	X		X	X												
Brion Energy	20	Compliance	Х	X			X	X	Х				X					X	X	X		Х	X				Х								
Cenovus Christina Lake	500	Porta ble-Compliance	Х	X		Х	X	X	Х			X						X	X	X		Х	X												
Stat Oil Leismer	501	Porta ble-Compliance	Х	X			X	X	Х									X	X	X		Х	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	X			X	X	X									X	X	X		X	X												
HEMP	104	Portable-Health			X								X	X	X			X	X	X		X	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

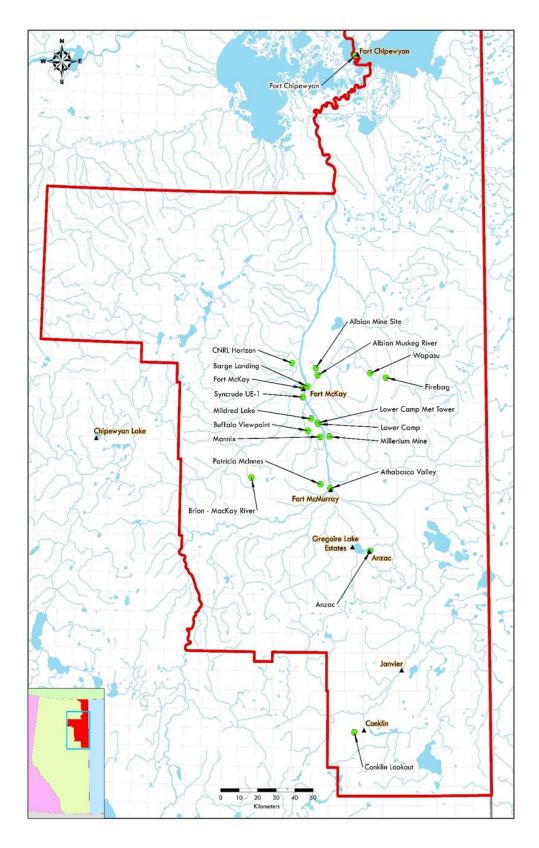


Figure 1.0 - WBEA Monitoring Network Sites

AMS 14 - Anzac Station Details

General Site Information

The Anzac AMS is a community station located approximately 35 km southeast of Fort McMurray on the northern edge of the hamlet of Anzac. It was installed January 1, 2016.

Item	Description			
Station ID	AMS 14			
Station Name	Anzac			
General description	Located North of	the TELUS Building	g, East of the railroad	tracks, inside Anzac
Community	Anzac			
Station Coordinates	56°26'56.07"	North	111° 2'16.71"	West
Station elevation	497			Meters
Station Address	NA			
Station Type	Community			
Initial Commission Date	NA			
Area Land Use	Crown land			
Angle of elevation to nearby buildings	0 degrees			
Average building height in area	NA			
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	23 meters	Height	40 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	20 meters		
Information	Туре	Stationary towe	er	
	Position	North side of th	ie trailer	
Station Install Date	NA			
Station Origin	Purchased new			
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре		Distance			Description		
Idling Trucks		23m on West Side			Water, Sewage and Semi Trucks idling next to house and garage		
Garage		23m NW			Where the trucks are housed and fixed, Emissions coming from garage Vents		
House		28m SW			Trucks are idling near, Emissions coming from house vents		
Trains/ Railroad Tracks		77m East side			Trains going through every week, Crews bring Trucks and equipment to fix tracks		
TELUS Trailer		19mS		TELUS trucks idling near TELUS Trailer			
Name	Туре	-	Traffic Volume	Distan	ce (m)	Description	
Stony Mountain Road	Pavement		High	62mS		Main Road for Anzac	
Access Road	Gravel		Low	16mE		Access road to Station	

Table 3.0 – Local Source Information

Area Topographic Map

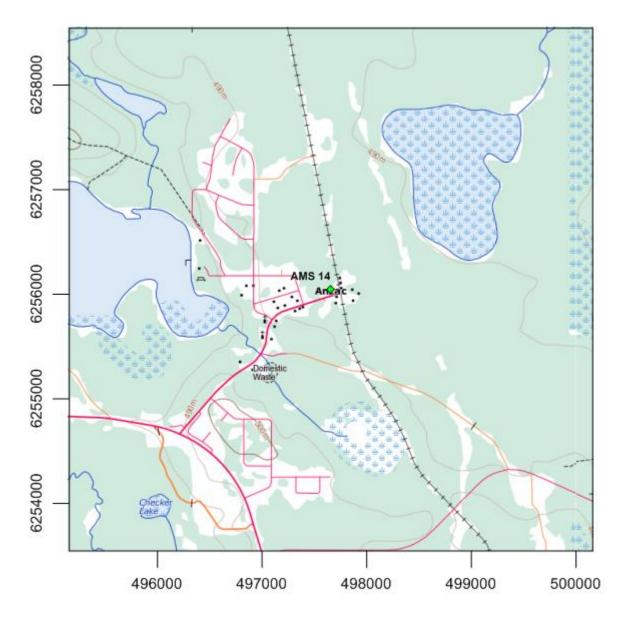


Figure 2.0 – Area Topographic map showing AMS 14 – Anzac Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 14 – Anzac Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Monitoring compound looking south

Figure 4.2 – Sampling Deck

Figure 4.3 – Environ looking north

Figure 4.4 – Environ looking east

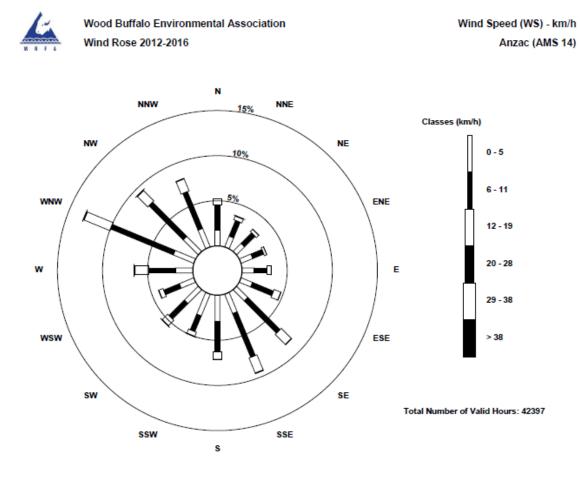
Figure 4.5 – Environ looking south

Figure 4.6 - Environ looking west

Figure 4.7 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.8 –Instrument Rack

Equipment Inventory


Parameter Measured		Make	Model	Coniol Number	Damas	Detection Dringings	Sampling Height (m)	
Param	eter Measured	ічаке	Iviodei	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulphur Dioxide	Thermo Instruments	43i	1152430005	0-1000ppb	Pulsed Fluorescence	4	1
TRS	Total Reduced Sulfur	Thermo Instruments	43i-TLE	1300156232	0-100ppb	Pulsed Fluorescence	4	1
TRS Converter	Thermal oxidizer	CD Nova	CDN101	510	NA	Thermal Oxidizer paired with 43iTLE for TRS measurement		
NOx	Nitrogen Dioxide	Thermo Instruments	42i	1426262592	0-1000ppb	Chemiluminescence	4	1
NMHC	Methane Non Methane	Thermo Instruments	55i-LT	1218153355	0-50ppm	Gas Chromatography and Flame Ionization	4	1
03	Ozone	Thermo Instruments	49i	1426262595	0-500 ppb	UV Photometric	4	1
PM2.5	PM <2.5 um in diameter.	Thermo Instruments	5030	E-1093	0-1000ug/m3	Synchronized Nephelometric/Radiometric Particulate Mass Monitor	4	1
RH/Temp	Relative humidity / external temp	Vaisala	HMP155	G4330054	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
WS	Wind Speed<10um	Met One	010C-1	D6359	0-80kph	Chopped optical	20	
WD	Wind Direction	Met One	20C-1	Z1048	0-360 degrees	Resistive (potentiometer)	20	
LW	Leaf wetness sensor	Decagon Devices	LWS	NA	NA			
PC	Precip tipping bucket	Met One	8" Heated Rain Gauge 0.01"	N1505A	NA			

PM 2.5	Partisol sampler	Thermo Instruments	2000i	20001204821408	NA	Cartridge Filter	2	
PM 2.5	Partisol sampler	Thermo Instruments	2000i	20001204581405	NA	Cartridge Filter	2	
PM 10	Partisol sampler	Thermo Instruments	2000i	20001203871308	NA	Cartridge Filter	2	
PM 10	Partisol sampler	Thermo Instruments	2000i	2000IW205911510	NA	Cartridge Filter	2	
PUF	Polycyclic aromatic hydrocarbons	Tisch	TE-PUF+BL	1001055	NA	Filter/ canister sampler	2	
VOC	Volatile organic compounds	Tisch	TE-123	1024	NA	Canister sampler	4	

Table 4.0 - Analytical Equipment in AMS 14

Name	Description	Make	Model	Serial Number	
Datalogger	Datalogger	Campbell Scientific	CR3000	2582	
ZAG	Zero Air Generator	Teledyne API	T701	4764	
HVAC	Air Conditioner/Heater .Wall mount unit	BARD	NA	NA	
Shelter / Building	Air monitoring trailer	National	NA	2N9MF53785	
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	T700	2659	

Table 5.0 - Support Equipment in AMS 14

Wind Rose

Figure 5.0 – AMS 14 Five Year Wind Rose

Figure 6.0 – Plan view sketch showing a 500m radius around Anzac Station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 15 – CNRL Horizon

2017

Table of Contents

Ietwork Background	. 3
MS 15 – CNRL Horizon Station Details	.6
General Site Information	.6
Area Topographic Map	.7
Aerial Photo	.8
Site photos	.9
Equipment Inventory	13
Wind Rose	15

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 15 – CNRL Horizon Station	7
Figure 3.0 – Aerial photo showing AMS 15 – CNRL Horizon Station	8
Figure 4.0 – Exterior of monitoring station	9
Figure 4.1 – Environ looking north	9
Figure 4.2 – Environ looking east	10
Figure 4.3 – Environ looking south	10
Figure 4.4 – Environ looking west	11
Figure 4.5 – Outdoor Sample Inlet & Indoor Sample Manifold	11
Figure 4.6 – Instrument rack	12
Table 4.0 - Analytical Equipment in AMS 15	13
Table 5.0 - Support Equipment in AMS 15	14
Figure 5.0 – AMS 15 Five Year Wind Rose	15
Figure 6.0 – Plan View Sketch	16

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	AI	RM	O	IIT	ÓR	INC	iΝ	ETV	NŌ	RK							_							
	WBEA Program - X																			Er	nhand	ed D	epos	ition	Prog	ram	- X								
	CONTINUOUS MONITORED PARAMETERS													INTEGRATED SAMPLING																					
STATION NAME	STATION #	TYPE	\$O ₂	H_2S	TRS	O 3	NOx	NO	NO ₂	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLO	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		X	Х	X	X	X	X		X	X	Х	Х	X	X	Х	Х	X		X	X	X	X		Х	Х	X	X	Х	X	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									X					Х	X	X		X	X												
Lower Camp	3	Meteorological																	X	X	X	Х	X												
Buffalo Viewpoint	4	Compliance	Х	Х									X					Х	Х	X		Х	X												
Mannix	5	Compliance/Meteorological	X	Х									X					Х	X	X	X	X	X									X		X	X
Patricia McInnes	6	Health	X		X	X	X	X	Х	X		X	Х	X	X			Х	Х	X		Х	X				Х				Х	X	X	X	Х
Athabasca Valley	7	Health	Х		X	X	X	X	X		X	X	X	X	X			Х	X	X		X	X			Х					X	X	X	X	X
Fort Chipewyan	8	Background/Health	Х			X	X	X	X			X						Х	X	X		Х	X	X	Х		Х								
Barge Landing	9	Attribution			X								X					Х	X	X		X	X			X							X		
Lower Camp B	11	Compliance	Х	Х									Х					Х	Х	X		Х	X									X		X	X
Fort McKay South	13	Attribution	Х		X	X	X	X	X			X	X					Х	X	X		Х	X								Х	X	X	X	X
Anzac	14	Attribution	Х		Х	X	Х	X	Х			X	Х	Х	Х			Х	Х	X		Х	X	X	Х		Х				Х	X	X	X	
CNRL - Horizon	15	Compliance	Х		X		X	X	X			X	X					Х	X	X		X	X	X			X				X		X		
Shell Muskeg River	16	Compliance	Х				X	X	Х			X	Х					Х	Х	X		Х	X			Х					Х				
Wapasu Creek	17	Compliance	Х	Х		X	X	X	X			X	X					Х	X	X	X	Х	X				X			X				X	X
Conklin	18	Background	Х		X	Х	X	X	Х			X	Х	Х	Х	X		Х	Х	X		Х	X	X	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	Х			X	X	X				X					Х	X	X		X	X												
Brion Energy	20	Compliance	Х	Х			X	X	Х				X					Х	X	X		Х	X				X								
Cenovus Christina Lake	500	Porta ble-Compliance	Х	Х		X	X	X	Х			X						Х	X	X		Х	X												
Stat Oil Leismer	501	Porta ble-Compliance	Х	Х			X	X	Х									Х	Х	X		Х	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	Х			X	X	X									Х	X	X		X	X												
HEMP	104	Porta ble-He alth			X								X	X	X			Х	Х	X		Х	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

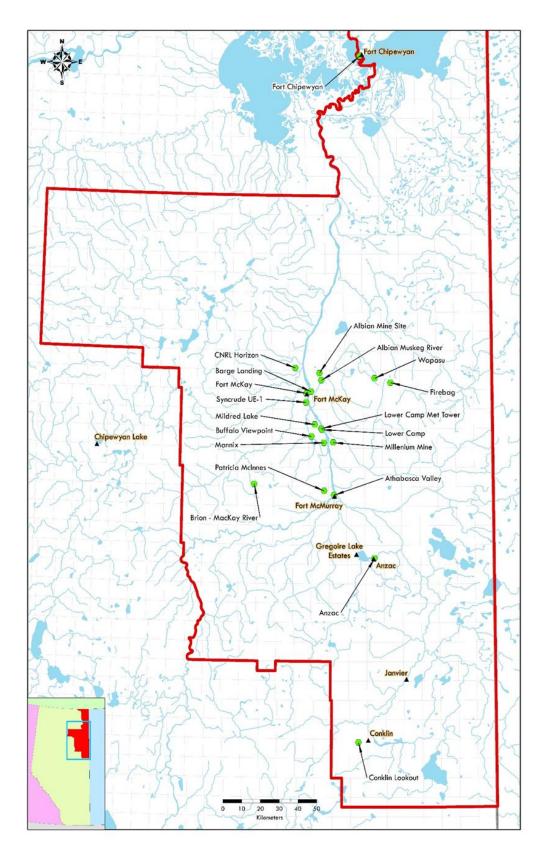


Figure 1.0 - WBEA Monitoring Network Sites

AMS 15 – CNRL Horizon Station Details

General Site Information

The CNRL Horizon is compliance air monitoring station which is located in the regional Municipality of Wood Buffalo, 75 km Northwest of Fort McMurray, Alberta near Fort McKay. The air quality station is a requirement of Alberta Environment approval number 149968-00-01.

Item	Description			
Station ID	AMS 15			
Station Name	CNRL Horizon			
General description	Located at about 3	00 m northwest of	the Total Joslyn camp.	
Community	NA			
Station Coordinates	57°18'13.28"	North	111°44'22.16"	West
Station elevation	302			Meters
Station Address	NA			
Station Type	Compliance			
Initial Commission Date	NA			
Area Land Use	Industrial			
Angle of elevation to nearby buildings	NA			
Average building height in area	NA			
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	10 meters	Height	10 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-u	p tower	
	Position	Attached to No	orth end of monitoring sh	nelter
Station Install Date	NA			
Station Origin	Purchased new			
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре		Distanc	ce		Descriptio	n	
Camp		300 m	SE		Total Josh	yn work	ers camp
Name	Туре		Traffic Volume	Dista	ince (m)	[Description
Roadway	Access road		Very Low	3 m		[Dirt Road

Table 3.0 – Local Source Information

Area Topographic Map

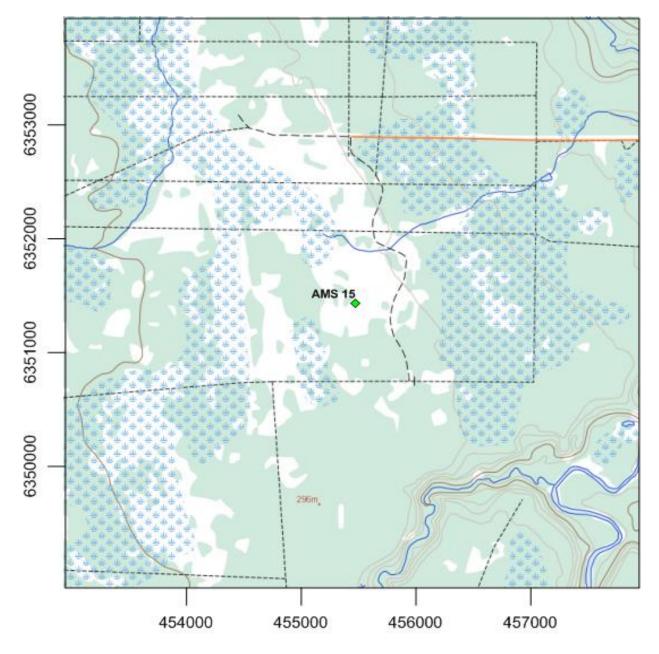


Figure 2.0 – Area Topographic map showing AMS 15 – CNRL Horizon Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 15 – CNRL Horizon Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Environ looking north

Figure 4.2 – Environ looking east

Figure 4.3 – Environ looking south

Figure 4.4 - Environ looking west

Figure 4.5 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.6 – Instrument rack

Equipment Inventory

Davaa		Maka	Madal		Damas	Data ation Dringinla	Sampling	Height (m)
Param	neter Measured	Make	Model	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulfur Dioxide	Thermo Instruments	43i	710321322	0-1000ppb	Pulsed Fluorescence	4	1
TRS	Total Reduced Sulfur	Thermo Instruments	43i-TLE	1151680032	0-100ppb	Pulsed Fluorescence	4	1
TRS converter	Thermal oxidizer	CD Nova	CDN 101	531	NA	Thermal Oxidizer paired with 43iTLE for TRS measurement		1
NOx	Nitrogen oxide	Thermo Instruments	42i	710321429	0-1000ppb	Chemiluminescence	4	1
THC	Total Hydrocarbon	Thermo Instruments	51i-LT	1327059295	0-50ppm	Gas Chromatography and Flame Ionization	4	1
PM2.5	PM <2.5 um in diameter	Thermo Instruments	5030	E-2020	0-1000ug/m3	Synchronized Nephelometric/Radiometric Particulate Mass Monitor	4	1
Temp/RH	External temp/ Relative Humidity	Vaisala	HMP155	J2310016	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	1
WS	Wind Speed	Met One	010C-1	J4337	0-80kph	Chopped optical	10	
WD	Wind Direction	Met One	20C-1	J2732	0-360 degrees	Resistive (potentiometer)	10	
GR	Global radiation	Met One	NA	38244				
PM 10	Integrated sampling	Thermo Instruments	2025iD	2000l2 04961409	NA	Inertial Separator and Cartridge Filter	2	
PM 10	Integrated sampling	Thermo Instruments	2025iD	2000l2 04891408	NA	Inertial Separator and Cartridge Filter	2	
РС	Precip tipping bucket	Met One	8" rain gauge 0.01"	N15053	NA		2	
VOC	Canister	TISCH		1030			4	1

Table 4.0 - Analytical Equipment in AMS 15

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	11040
ZAG	Zero Air Generator	Teledyne API	T701	1004
HVAC	Air Conditioner/Heater .Wall mount unit	BARD	ΝΑ	NA
Shelter / Building	Air monitoring trailer	National trailer	NA	NA
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	Т700	1223

Table 5.0 - Support Equipment in AMS 15

Wind Rose

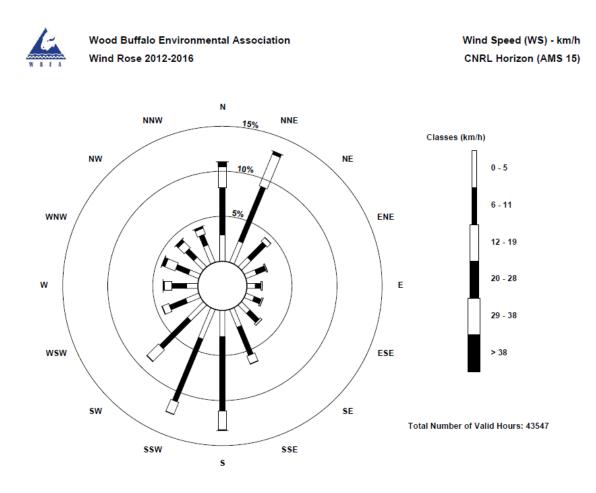


Figure 5.0 – AMS 15 Five Year Wind Rose

Figure 6.0 – Plan view sketch showing a 500m radius around CNRL Horizon Station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 16 – Shell Muskeg River

2017

Table of Contents

Network Background	3
AMS 16 – Shell Muskeg River Station Details	6
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	15

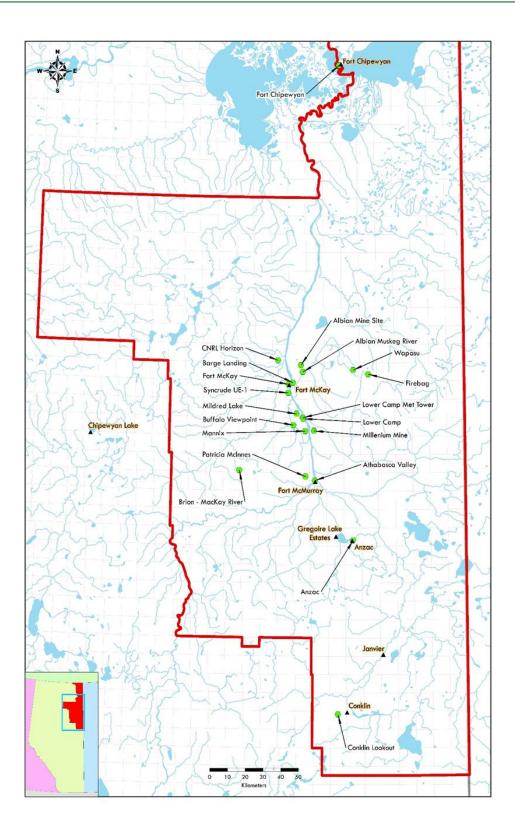
Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 16 – Shell Muskeg River Station	7
Figure 3.0 – Aerial photo showing AMS 16 – Shell Muskeg River Station	8
Figure 4.0 – Exterior of monitoring station looking north	9
Figure 4.1 – Environ looking north	9
Figure 4.2 – Environ looking east	.10
Figure 4.3 – Environ looking south	.10
Figure 4.4 –Environ looking west	.11
Figure 4.5 – Instrument racks	.11
Figure 4.6 – Indoor manifold setup and Outdoor sample inlet	.12
Figure 4.7 – PM 10, Integrated Partisol Samplers	. 12
Table 4.0 - Analytical Equipment in AMS 16	.13
Table 5.0 - Support Equipment in AMS 16	.14
Figure 5.0 – AMS 16 Five Year Wind Rose	.15
Figure 6.0 – Plan view sketch showing a 500m radius around Shell Muskeg River station	.16

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO₂, H₂S, TRS, O₃, NO_x, NO, NO₂, NH₃, CO, PM_{2.5}, THC, NMHC, and CH₄. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.


The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO₂, H₂S, O₃, NO_x, NO, NO₂, NH₃, PM_{2.5}, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM_{2.5}, PM₁₀, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE	A A	١M	BIE	NT	All	RN	ION	NIT(OR	INC	6 N	ETV	NO	RK														
		WBEA Program	n - X																	E	nhano	ed D	epos	ition	Prog	gram	- X								
	CONTINUOUS MONITORED PARAMETERS												INTEGRATED SAMPLING																						
STATION NAME	STATION #	ТҮРЕ	SO2	H ₂ S	TRS	03	NO _x	NO	NO2	NH3	CO	PM _{2.5}	THC	NMHC	CH_4	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIF	EC/OC	SASS	Dichot	PM ₁₀	PM _{2.5}	VOC	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		Х	Х	Х	Х	X	Х		Х	Х	Х	Х	X	X	X	Х	Х		Х	Х	Х	Х		Х	Х	X	X	Х	Х	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					X	X	Х		Х	Х												
Lower Camp	3	Meteorological																	X	X	X	Х	Х												
Buffalo Viewpoint	4	Compliance	Х	Х									Х					X	X	X		X	Х												
Mannix	5	Compliance/Meteorological	Х	Х									Х					X	X	X	X	X	Х									X		X	X
Patricia McInnes	6	Health	Х		Х	Х	Χ	Х	X	X		X	Х	X	Х			X	X	X		X	X				X				Х	Х	X	X	Х
Athabasca Valley	7	Health	Х		Х	Х	Χ	Х	X		X	X	Х	X	Х			X	X	X		X	X			X					X	Х	X	X	Х
Fort Chipewyan	8	Background/Health	Х			Х	Χ	Х	X			X						X	X	X		X	X	Х	Χ		X								
Barge Landing	9	Attribution			X								Х					X	X	X		X	Х			X							X		
Lower Camp B	11	Compliance	Х	Х									Х					X	X	Х		Х	Х									X		X	X
Fort McKay South	13	Attribution	X		X	Х	Χ	Х	X			X	Х					X	X	X		X	X								X	X	X	X	X
Anzac	14	Attribution	Х		X	X	X	Х	X			X	X	Х	Х			X	X	X		Х	X	X	Х		X				Х	Х	X	X	
CNRL - Horizon	15	Compliance	Х		X		Χ	Х	X			X	Χ					X	X	X		X	X	Х			X				X		X		
Shell Muskeg River	16	Compliance	Х				Χ	Х	X			Х	Х					X	X	Х		Х	Х			X					X				
Wapasu Creek	17	Compliance	Х	Х		Х	Χ	Х	X			X	Х					X	X	X	X	X	X				X			X				X	X
Conklin	18	Background	Х		X	Х	Χ	Х	X			X	Х	X	X	X		X	X	X		X	X	Х	Х		X		X	X			X	X	X
Suncor Firebag	19	Compliance	X	Х			Х	Х	X				X					X	X	X		X	X												
Brion Energy	20	Compliance	Х	Х			Χ	Х	X				X					X	X	X		Х	X				X								
Cenovus Christina Lake	500	Portable-Compliance	Х	Х		Х	Х	Х	X			Х						X	Χ	Х		X	Х												
Stat Oil Leismer	501	Portable-Compliance	Х	Х			Χ	Х	X									X	X	X		Х	Х												
ConocoPhillips Surmont	502	Portable-Compliance	Х	Х			Х	Х	X									X	Х	X		Х	Х												
HEMP	104	Portable-Health			X								Х	X	Х			X	X	X		X	Х												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

Figure 1.0 – WBEA Monitoring Network Sites

AMS 16 - Shell Muskeg River Station Details

General Site Information

The Shell Muskeg River is a compliance station, located about 4 km southeast of the decommissioned Albian Mine Site (AMS 10), and commenced operation on February 10, 2009.

The Shell Muskeg River station contains analyzers that continuously measure NO, NO₂, NO_x SO₂, THC, PM2.5, wind speed and direction, and temperature. PM10 is measured intermittently.

Item	Description			
Station ID	AMS 16			
Station Name	Shell Muskeg Rive	er		
General description	Located approxim	nately 250m south of	f Shell MRM plant site	
Community	NA			
Station Coordinates	57°14'56.73"	North	111°30'31.15"	West
Station elevation	285			Meters
Station Address	NA			
Station Type	Compliance			
Initial Commission Date	February 10, 2009	9		
Area Land Use	Industrial			
Angle of elevation to nearby buildings	NA			
Average building height in area	NA			
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	10 meters	Height	10 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	20 meters		
Information	Туре	Stationary tow	er	
	Position	NE side of the s	station	
Station Install Date	NA			
Station Origin	Previously AMS 1	0		
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре		Distan	се		Description							
Communications towe	r and building	70m			Radio/cell tower and building							
Shell - Muskeg River M	ine	300 m	north		MRM's extraction and tailings operations.							
Name	Туре		Traffic Volume	Distan	ce (m)	Description						
roadway	Plant site acce	ss	high	300		Asphalt road						
roadway	Station access		low	30	Gravel road							

Table 3.0 – Local Source Information

Area Topographic Map

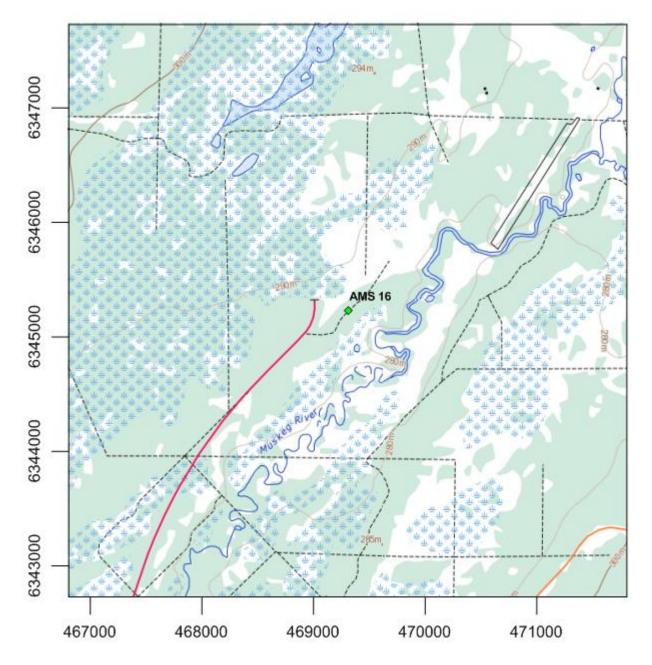


Figure 2.0 – Area Topographic map showing AMS 16 – Shell Muskeg River Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 16 – Shell Muskeg River Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station looking north

Figure 4.1 – Environ looking north

Figure 4.2 – Environ looking east

Figure 4.3 – Environ looking south

Figure 4.4 - Environ looking west

Figure 4.5 – Instrument racks

Figure 4.6 – Indoor manifold setup and Outdoor sample inlet

Figure 4.7 – PM 10, Integrated Partisol Samplers

Equipment Inventory

Parameter Measured		Make	Model	Serial Number	Range	Detection Principle	Sampling Height (m)	
							Ground	Shelter
SO2	Sulfur dioxide	Thermo instruments	43i	1118148498	0-1000ppb	Pulsed Fluorescence	4	1
тнс	Total Hydrocarbons	Thermo instruments	51i-LT	1218153458	0-50ppm	Gas Chromatography and Flame Ionization	4	1
NOx	NO, NO2, NOx	Thermo instruments	42i	1426262593	0-1000ppb	Chemiluminescence	4	1
PM2.5	Continuous particulate	Thermo instruments	SHARP 5030	E-798	0-1000 ug/m3	Synchronized Nephelometric/Radiometric Particulate Mass Monitor	4	1
PM10	Integrated sampling	Thermo instruments	2000i	20001203701306	NA	Cartridge filter	2	
PM10	Integrated sampling	Thermo instruments	2000i	20001204511404	NA	Cartridge filter	2	
RH/Temp	Relative humidity/external temperature	Vaisala	HMP155	G4340064	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.		
WS	Wind speed	Met One	010C-1	N10022	0-80kph	Chopped optical	20	
WD	Wind direction	Met One	20C-1	N12035	0-360 degrees	Resistive (potentiometer)	20	
BP	Barometric Pressure sensor	Young	61302V-10	BPA4394				

Table 4.0 - Analytical Equipment in AMS 16

Name	Description	Make	Model	Serial Number	
Datalogger	Datalogger	Campbell Scientific	CR3000	3492	
ZAG	Zero Air Generator	Teledyne API	T701	2155	
HVAC	Air Conditioner/Heater .Wall mount unit	BARD	NA	NA	
Shelter / Building	Air monitoring trailer	National Trailer	NA	2N9MFY3614	
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	т700	493	

Table 5.0 - Support Equipment in AMS 16

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2012-2016 Wind Speed (WS) - km/h Shell Muskeg River (AMS 16)

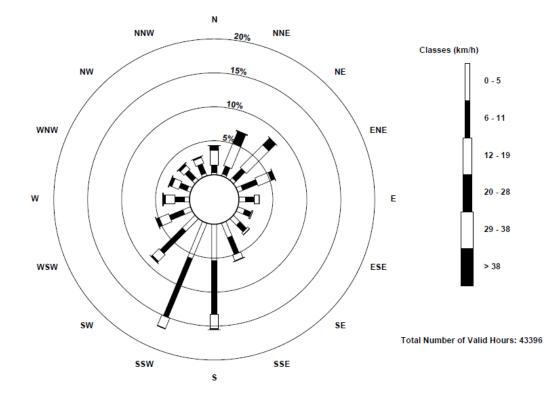


Figure 5.0 – AMS 16 Five Year Wind Rose

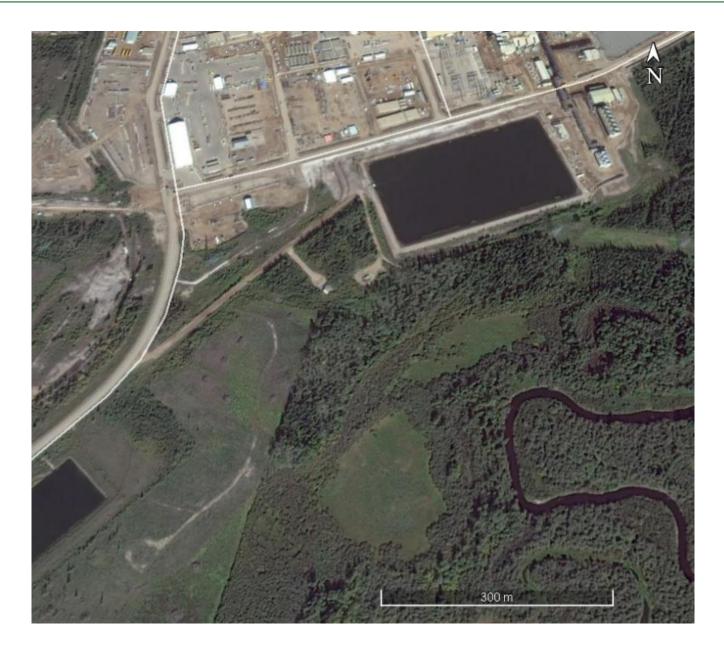


Figure 6.0 – Plan view sketch showing a 500m radius around Shell Muskeg River station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 17 – Wapasu Creek

Table of Contents

Network Background	3
AMS 17– Wapasu Station Details	6
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	15
Wind Rose	17

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network4
Figure 1.0 – WBEA Monitoring Network Sites
Table 2.0 – General Site Information
Table 3.0 – Local Source Information
Figure 2.0 – Area Topographic map showing AMS 17 – Wapasu Creek Station7
Figure 3.0 – Aerial photo showing AMS 17 - Wapasu Creek Station
Figure 4.0 – Exterior of monitoring station9
Figure 4.1 – Sampling Deck9
Figure 4.2 –High Volume PAH Sampler10
Figure 4.3 – Wind Profiler Remtech10
Figure 4.4– Continuous precipitation monitoring instrument (Pluvio)11
Figure 4.5 – Environ looking north11
Figure 4.6 – Environ looking east
Figure 4.7 – Environ looking south12
Figure 4.8 – Environ looking west
Figure 4.9 – Outdoor Sample Inlet & Indoor Sample Manifold13
Figure 4.10 – Instrument Racks14
Figure 4.11 – Aethalometer 22 rack14
Table 4.0 - Analytical Equipment in AMS 1715
Table 5.0 - Support Equipment in AMS 1716
Figure 5.0 – AMS 17 Three Year Wind Rose17
Figure 6.0 – Plan view sketch showing a 500m radius around Wapasu Creek station

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 3 to 10 air quality parameters. The continuously measured air quality parameters include SO₂, H₂S, TRS, O₃, NO_x, NO, NO₂, NH₃, CO, PM_{2.5}, THC, NMHC, and CH₄. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness and vertical temperature gradient. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO₂, H₂S, O₃, NO_x, NO, NO₂, NH₃, PM_{2.5}, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	AIF	RM	ION	IIT	OR	NG	i N	ETV	vo	RK														
		WBEA Program	m - X																	E	nhano	ed D	epos	ition	Prog	gram	- X								
					(ONT	INUC	DUS N	ION	TOR	ED PA	RAN	IETER	s															IN'	TEGR	ATEC) SAN	MPLI	NG	
STATION NAME	STATION #	TYPE	SO ₂	H_2S	TRS	03	NO _x	NO	NO_2	\mathbf{NH}_{3}	CO	PM _{2.5}	THC	NMHC	CH_4	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PM ₁₀	PM _{2.5}	VOC	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	X	X	Х	Х	Х		Х	Х	Х	Х		Х	Х	X	X	Х	Х	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					Х	Х	Х		Х	Х												
Lower Camp	3	Meteorological																	Х	Х	Х	Х	Х												
Buffalo Viewpoint	4	Compliance	Х	х									Х					Х	Х	X		Х	Х												
Mannix	5	Compliance/Meteorological	Х	х									Х					Х	Х	X	X	Х	Х									X		X	X
Patricia McInnes	6	Health	Х		Х	Х	Х	Х	Х	Х		Х	Х	Х	Х			Х	Х	X		Х	Х				Х				Х	Х	Х	х	X
Athabasca Valley	7	Health	Х		Х	Х	Х	Х	Х		Х	Х	Х	Х	Х			Х	Х	Х		Х	Х			Х					Х	Х	Х	Х	Х
Fort Chipewyan	8	Background/Health	Х			Х	Х	Х	Х			Х						Х	Х	Χ		Х	Х	Х	Х		Х								
Barge Landing	9	Attribution			Х								Х					Х	Х	Х		Х	Х			Х							Х		
Lower Camp B	11	Compliance	Х	х									Х					Х	Х	Х		Х	Х									X		X	X
Fort McKay South	13	Attribution	Х		Х	Х	Х	Х	Х			Х	Х					Х	Х	Х		Х	Х								Х	X	Х	X	X
Anzac	14	Attribution	Х		Х	Х	Х	х	Х			Х	Х	Х	х			Х	Х	Х		х	Х	х	Х		Х				Х	Х	Х	Х	
CNRL - Horizon	15	Compliance	Х		Х		Х	Х	Х			Х	Х					Х	Х	Х		х	Х	х			Х				Х		Х		
Shell Muskeg River	16	Compliance	Х				Х	Х	Х			Х	Х					Х	Х	Х		Х	Х			Х					Х				
Wapasu Creek	17	Compliance	Х	Х		Х	Х	Х	Х			Х	Х					Х	Х	Х	Х	Х	Х				Х			X				X	X
Conklin	18	Background	Х		Х	Х	Х	Х	Х			Х	Х	Х	Х	X		Х	Х	Х		Х	Х	Х	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	Х			Х	Х	Х				Х					Х	Х	Χ		Х	Х												
Brion Energy	20	Compliance	Х	Х			Х	Х	Х				Х					Х	Х	Х		Х	Х				Х								
Cenovus Christina Lake	500	Portable-Compliance	Х	Х		Х	Х	Х	Х			Х						Х	Х	Х		Х	Х												
Stat Oil Leismer	501	Portable-Compliance	Х	Х			Х	Х	Х									Х	Х	Х		Х	Х												
ConocoPhillips Surmont	502	Portable-Compliance	Х	Х			Х	Х	Х									Х	Х	Х		Х	Х												
HEMP	104	Portable-Health			Х								Х	Х	Х			Х	Х	Х		Х	Х												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

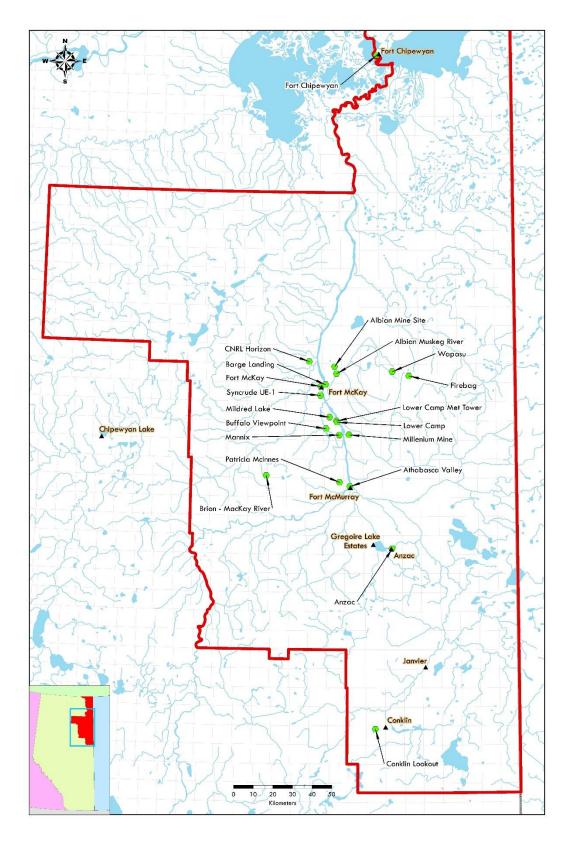


Figure 1.0 - WBEA Monitoring Network Sites

AMS 17 - Wapasu Creek Station Details

General Site Information

The Wapasu station was installed in 2013 as a compliance station to monitor for Husky. It is situated north of the Wapasu camp, near the 16-22 water pump house.

Item	Description			
Station ID	AMS 17			
Station Name	Wapasu Creek			
General description	The site is located	on the north of the	Wapasu Camp.	
Community	NA			
Station Coordinates	57°15'33.11"	North	111° 2'18.90"	West
Station elevation	491			Meters
Station Address	NA			
Station Type	Compliance			
Initial Commission Date	NA			
Area Land Use	Oil sands lease / In	dustrial		
Angle of elevation to nearby buildings	0 degrees			
Average building height in area	NA			
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	40 meters	Height	15 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-up	o tower	
	Position	Attached to No	rth end of monitoring sl	nelter
Station Install Date	November 2013			
Station Origin	Purchased new			
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре		Distan	ce		Description	
Abandoned Well		To the	e East approximately 6		Well Abando	ned, Capped
		metre	S			
Building		To the	North approximately	310	Pump House	
		metre	S			
Name	Туре	-	Traffic Volume	Distan	ce (m)	Description
Roadways	Access road		low	5		Gravel access roads
Canterra	Main Road		High	1560		Gravel Road

Table 3.0 – Local Source Information

Area Topographic Map

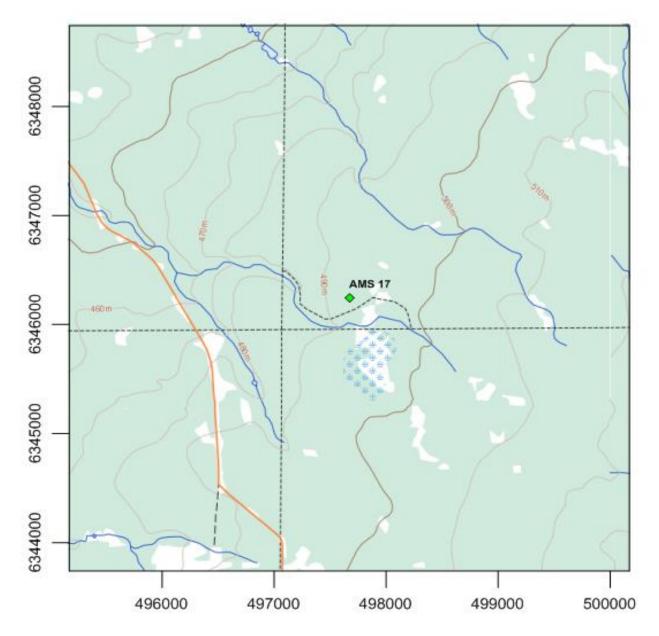


Figure 2.0 – Area Topographic map showing AMS 17 – Wapasu Creek Station

Aerial Photo

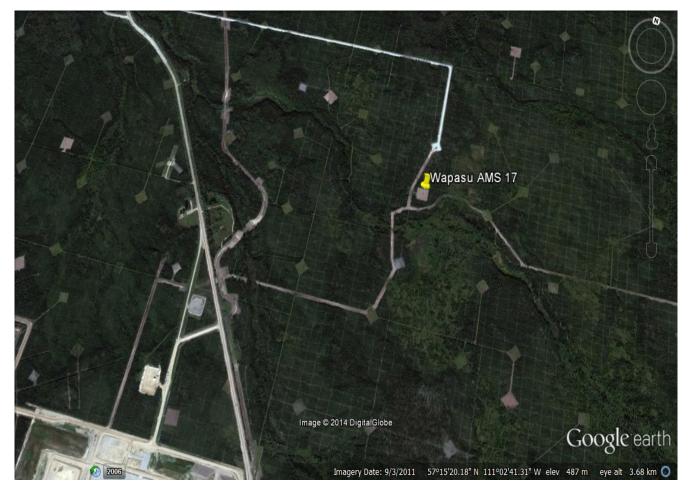


Figure 3.0 – Aerial photo showing AMS 17 - Wapasu Creek Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Sampling Deck

Figure 4.2 – High Volume PAH Sampler

Figure 4.3 – Wind Profiler Remtech

Figure 4.4– Continuous precipitation monitoring instrument (Pluvio)

Figure 4.5 - Environ looking north

Figure 4.6 – Environ looking east

Figure 4.7 – Environ looking south

Figure 4.8 - Environ looking west

Figure 4.9 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.10 – Instrument Racks

Figure 4.11 – Aethalometer 22 rack

Equipment Inventory

Dava	weater Measured	Maka	Madal		Damaa	Detection Dringinle	Sampling	Height (m)
Para	meter Measured	Make	Model	Serial Number	Range	Detection Principle	Ground	Shelter
H2S	Hydrogen Sulfide	Thermo Electron Instruments	450i	1218153583	0 – 100 ppb	Pulsed Fluorescence	4	1
SO2	Sulfur Dioxide	Thermo Electron Instruments	43i	1218153459	0 – 1000 ppb	Pulsed Fluorescence	4	1
NOx	Nitrogen Dioxide	Teledyne API	T200	833	0 – 1000 ppb	Chemiluminescence	4	1
THC	Total Hydrocarbons	Thermo Electron Instruments	51i	1218153352	0 – 50 ppm	Gas Chromatography and Flame Ionization	4	1
03	Ozone	API	T400	824	0-500ppm	UV Photometric	4	1
PM2.5	PM <2.5 um in diameter	Thermo Electron Instruments	SHARP	CM-2390	0-100ug/m3	Synchronized Nephelometric/Radiometric Particulate Mass Monitor	4	1
AE22	Aethalometer	Magee Scientific	AE22-ER	979:0906			4	1
Dicot	PM2.5 Fine and Coarse	Thermo Electron Instruments Partisal	2000i-D	2000ID2 01251103	NA	Inertial Separator and Cartridge Filter	2	
PAH	РАН			N55326	NA	Canister / Filter Sampler	2	
Pluvio	Rain Gauge			356338			2	
	Wind Profiler	Remtech						
WS	Wind Speed	RM Young 8500	010C-1	P10039		Chopped optical	10	
WD	Wind Direction	RM Young 8500	020C-1	P19942		Resistive (potentiometer)	10	
Temp/RH	Temperature/relative Humidity	HMP 155C		G4330048		Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.		

Table 4.0 - Analytical Equipment in AMS 17

Name	Description	Make	Model	Serial Number
Datalogger	Data Acquisition System	Campbell Scientific	CR3000	2633
CR6 Datalogger	Data Acquisition System, used for AE22	Campbell Scientific	CR6	884
Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	T700	997
ZAG	Zero air generator	Teledyne API	T701	4427
HVAC	Air Conditioner/Heater. Wall mount unit.	BARD	N/A	N/A
Shelter	Air monitoring trailer	ITB	N/A	ITB1215686

Table 5.0 - Support Equipment in AMS 17

Wind Rose

Wood Buffalo Environmental Association Wind Rose December 2013 - December 2016 Wind Speed (WS) - km/h Wapasu (AMS 17)

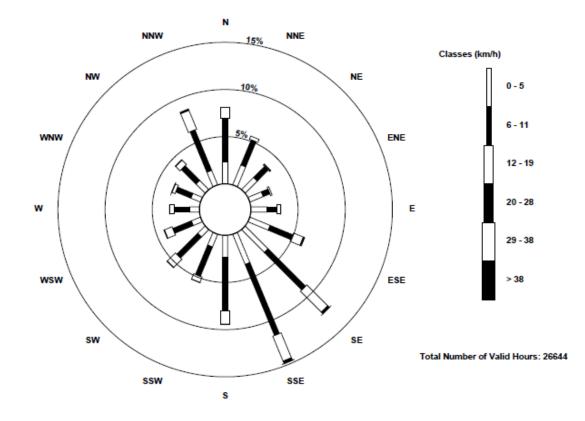


Figure 5.0 – AMS 17 Three Year Wind Rose



Figure 6.0 – Plan view sketch showing a 500m radius around Wapasu Creek station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 18 – Stony Mountain

2017

Table of Contents

Network Background	3
AMS 18 – Stony Mountain Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	. 155
Wind Rose	17

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 18 - Stony Mountain Station	7
Figure 3.0 – Aerial photo showing AMS 18 – Stony Mountain Station	8
Figure 4.0 – Exterior of monitoring station	9
Figure 4.1 – Environ looking south	9
Figure 4.2 – Environ looking north	10
Figure 4.3 Environ looking east	10
Figure 4.4 – Environ looking west	11
Figure 4.5 – Indoor sample manifold setup and outdoor sample inlet	11
Figure 4.6 – Compound with east-west orientation	12
Figure 4.7 – Compound with north-south orientation	12
Figure 4.8 – Instrument racks	13
Table 4.0 - Analytical Equipment in AMS 18	16
Table 5.0 - Support Equipment in AMS 18	16
Figure 5.0 – AMS 18 16 Months Wind Rose	17
Figure 6.0 – Plan view sketch showing a 500m radius around Stony Mountain station	18

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO₂, H₂S, TRS, O₃, NO_x, NO, NO₂, NH₃, CO, PM_{2.5}, THC, NMHC, and CH₄. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO₂, H₂S, O₃, NO_x, NO, NO₂, NH₃, PM_{2.5}, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM_{2.5}, PM₁₀, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oil Sands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	All	RN	101	NIT(OR	ING	i N	ETV	NO	RK		-						-		-				
		WBEA Program	m - X																	E	nhand	ed D	epos	ition	Prog	ram	- X								
					C	CONT	INUC)US N	/ION	ITOR	ED P/	ARAN	1ETER	S															IN	TEGR	RATE) SAM	MPLI	NG	
STATION NAME	STATION #	TYPE	SO ₂	H_2S	TRS	03	NO _x	NO	NO ₂	NH ₃	CO	PM _{2.5}	THC	NMHC	CH ₄	PAH	BTEX	Calib	WS	WD	vws	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PM ₁₀	PM _{2.5}	VOC	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		Χ	Х	Х	Х	Х	Х		X	X	Х	Х	X	X	X	X	X		Х	Х	Х	X		Х	Х	X	X	X	Х	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					Х	Х	Χ		Х	Х												
Lower Camp	3	Meteorological																	Х	X	Х	Х	Х												
Buffalo Viewpoint	4	Compliance	Х	Х									Х					Х	X	X		Х	Х												
Mannix	5	Compliance/Meteorological	Х	Х									Х					Х	Х	X	Х	Х	Х									X		X	X
Patricia McInnes	6	Health	Х		X	Х	Х	Х	Х	Х		X	Х	Х	Х			X	X	X		Х	Х				Х				X	Х	Х	Х	Х
Athabasca Valley	7	Health	Х		X	Х	Х	Х	Х		X	X	Х	Х	Х			X	X	X		Х	Х			X					X	Х	Х	Х	Х
Fort Chipewyan	8	Background/Health	Х			Х	Х	Х	Х			X						X	X	X		Х	Х	Х	Х		Х								
Barge Landing	9	Attribution			X								Х					X	X	X		Х	Х			X							Х		
Lower Camp B	11	Compliance	Х	Х									Х					Х	Х	X		Х	Х									X		X	X
Fort McKay South	13	Attribution	Х		Х	Х	Х	Х	Х			X	Х					Х	Х	X		Х	Х								Х	X	Х	X	X
Anzac	14	Attribution	Х		X	Х	Х	Х	Х			X	Х	Х	Х			Х	Х	X		Х	Х	Х	Х		Х				Х	Х	Х	Х	
CNRL - Horizon	15	Compliance	Х		Χ		Х	Х	Х			X	Х					Х	Х	Χ		Х	X	Х			Х				Х		Х		
Shell Muskeg River	16	Compliance	Х				Х	Х	Х			X	Х					Х	Х	Χ		Х	X			Χ					Х				
Wapasu Creek	17	Compliance	Х	Х		Х	Х	Х	Х			X	Х					Х	Х	Χ	Х	Х	Х				Х			X				X	X
Conklin	18	Background	Х		X	Х	Х	Х	Х			X	Χ	Х	Х	X		Χ	X	X		Х	Х	Х	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	Х			Х	Х	Х				Х					Х	Х	X		Х	Х												
Brion Energy	20	Compliance	Х	Х			Х	Х	Х				Х					Х	X	Χ		Х	Х				Х								
Cenovus Christina Lake	500	Portable-Compliance	Х	Х		Х	Х	Х	Х			X						Х	X	X		Х	Х												
Stat Oil Leismer	501	Portable-Compliance	Х	Х			Х	Х	Х									Х	X	X		Х	Х												
ConocoPhillips Surmont	502	Portable-Compliance	Х	Х			Х	Х	Х									Х	X	X		Х	Х												
HEMP	104	Portable-Health			Х								Х	Х	Х			Х	X	X		Х	Х												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

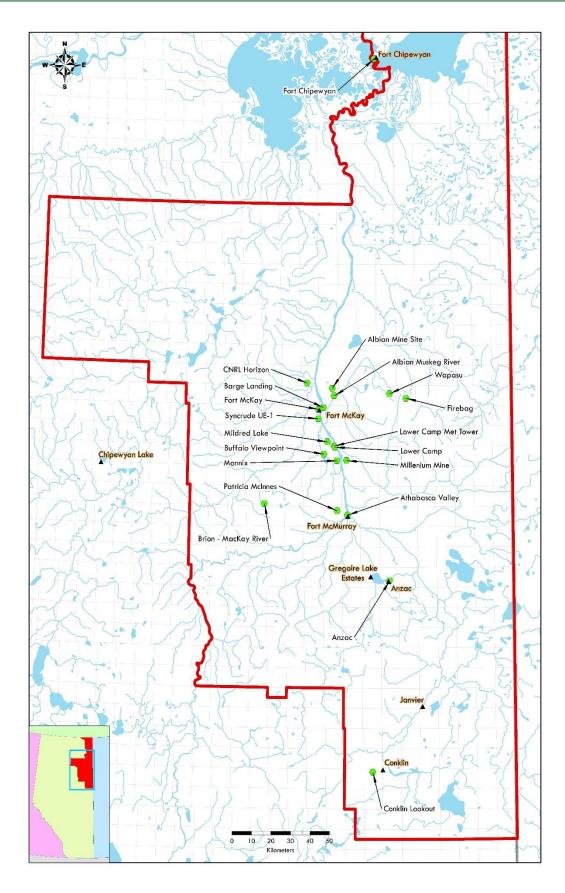


Figure 1.0 - WBEA Monitoring Network Sites

AMS 18- Stony Mountain Station Details

General Site Information

Stony Mountain is a WBEA air monitoring station located 5.5 km west of the community of Conklin, AB, at an elevation of 673 m, near a provincial fire tower.

Item	Description			
Station ID	AMS 18			
Station Name	Stony Mountain			
General description	Situated at approxi	mately 100 m SE o	f the ESRD fire watch to	wer.
Community	Conklin			
Station Coordinates	55°37'17.07"	North	111°10'21.67"	West
Station elevation	673			Meters
Station Address	1-33-076-08 W4			
Station Type	Background			
Initial Commission Date	NA			
Area Land Use	Crown land			
Angle of elevation to nearby	0 degrees			
buildings				
Average building height in	NA			
area				
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	10 meters	Height	10 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-u	p tower	
	Position	Attached to No	orth end of monitoring sh	nelter
Station Install Date	June 2015			
Station Origin	Purchased new			
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре		Distan	ce		Description	
Fire watch tower		100m I	NW of the station		Fire lookout to ESRD.	wer, operated by
Communication tower		30m ea	ast of the station		Telus commun	ication tower
Name	Туре	-	Traffic Volume	Distan	ce (m)	Description
Roadways		low	10 m		Dirt/ sandy road	

Table 3.0 – Local Source Information

Area Topographic Map

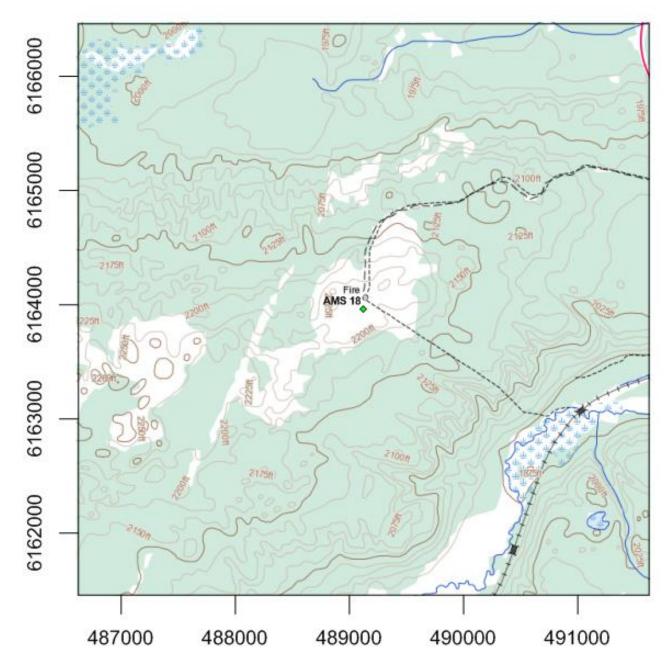


Figure 2.0 – Area Topographic map showing AMS 18 - Stony Mountain Station

Aerial Photo

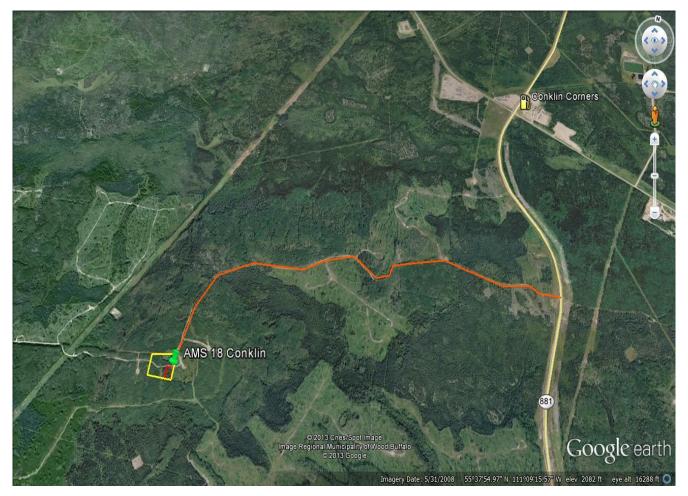


Figure 3.0 – Aerial photo showing AMS 18 – Stony Mountain Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Environ looking south

Figure 4.2 – Environ looking north

Figure 4.3 Environ looking east

Figure 4.4 - Environ looking west

Figure 4.5 – Indoor sample manifold setup and outdoor sample inlet

Figure 4.6 - Compound with east-west orientation

Figure 4.7 – Compound with north-south orientation

Figure 4.8 – Instrument racks

Figure 4.9 – Integrated sampling equipment deck

Figure 4.10 – Continuous precipitation monitoring instrument (Pluvio)

Equipment Inventory

Devere	ator Maggurad	Maka	Madal		Banga	Detection Drinciple	Sampling	Height (m)
Paramo	eter Measured	Make	Model	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulphur Dioxide	Thermo Instruments	43i	JC1501301453	0-1000ppb	Pulsed Fluorescence	4	1
TRS	Total Reduced Sulfur	Thermo Instruments	43i-TLE	1336160090	0-100ppb	Pulsed Fluorescence	4	1
TRS converter	Converter	CD Nova	CDN 101	522	NA	Thermal Oxidizer paired with 43iTLE for TRS measurement		1
NOx	Nitrogen Dioxide	Thermo Instruments	42i	1336160088	0-1000ppb	Chemiluminescence	4	1
NMHC	Non-Methane Hydrocarbons	Thermo Instruments	55i-LT	1505164381	0-50ppm	Gas Chromatography and Flame Ionization	4	1
03	Ozone	Thermo Instruments	49i	1501663733	0-500 ppb	UV Photometric	4	1
PM2.5	PM <2.5 um in diameter	Thermo Instruments	5030	4048/E-781	0-1000ug/m3	Synchronized Nephelometric/Radiometric Particulate Mass Monitor	4	1
AT/RH	Ambient temp/Relative humidity	Vaisala	HMP155	K1720033	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.		
WS	Wind Speed	Met One	010C-1	RM8126	0-80kph	Chopped optical	10	
WD	Wind Direction	Met One	20C-1	R14654	0-360 degrees	Resistive (potentiometer)	10	
GR	Global radiation	Met One	NA	38008			4	
PM 2.5	Integrated sampling	Thermo	2025iD	202D1W201651503	NA	Inertial Separator and Cartridge Filter	2	
LW	Leaf wetness sensor	Decagon Devices	LWS					
EC VOC	Integrated sampling	Xonteck		6229	NA	Canister Sampler	4	

EC Pluvio				363526	NA		2	
EC SASS pump box	Integrated sampling	Met One		R20400	NA		2	
EC SASS Shield	Integrated sampling	Met One		62688	NA		2	
EC SASS Control Box	Integrated sampling	Met One		R20401	NA		2	
EC PUF	Integrated sampling	TISCH	TE-303	1614	NA	Canister / Filter Sampler	2	
EC DICOT	Integrated sampling	Thermo Instruments		2001D201341103	NA	Inertial Separator and Cartridge Filter	2	
EC DICOT	Integrated sampling	Thermo Instruments		2001D201181103	NA	Inertial Separator and Cartridge Filter	2	
		in mont in ANAC 1	_					

Table 4.0 - Analytical Equipment in AMS 18

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	9035
ZAG	Zero Air Generator	Teledyne API	T701	5610
HVAC	Air Conditioner/Heater .Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring trailer	ITB	NA	ITB-1416019
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	Т700	1222

Table 5.0 - Support Equipment in AMS 18

Wind Rose

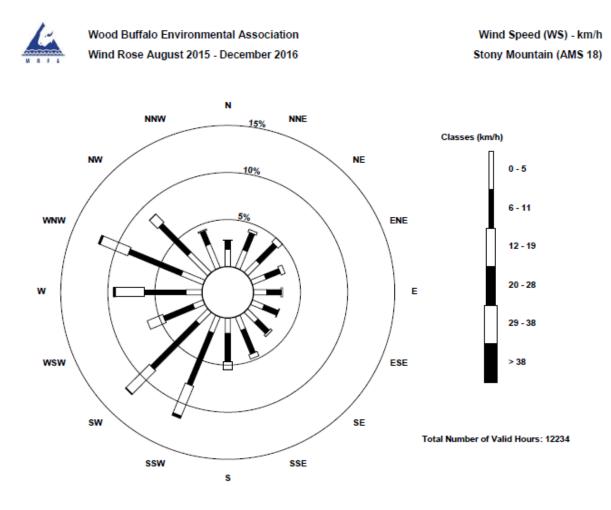


Figure 5.0 – AMS 18 16 Months Wind Rose

Figure 6.0 – Plan view sketch showing a 500m radius around Stony Mountain station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 19 – Firebag

2017

Table of Contents

Network Background	3
AMS 19 – Firebag Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photos	8
Site photos	9
Equipment Inventory	14
Wind Rose	15

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	.4
Figure 1.0 – WBEA Monitoring Network Sites	. 5
Table 2.0 – Station Information	.6
Table 3.0 – Local Source Information	.6
Figure 2.0 – Area Topographic map showing AMS 19 – Firebag Station	. 8
Figure 4.0 – Exterior of monitoring station1	10
Figure 4.1 – monitoring station looking east1	10
Figure 4.2 – Environ looking north1	
Figure 4.3 – Environ looking east	11
Figure 4.4 – Environ looking south1	12
Figure 4.5 – Environ looking west	12
Figure 4.6 – Outdoor Sample Inlet & Indoor Sample Manifold1	13
Figure 4.7 – Instrument Racks	
Table 4.0 - Analytical Equipment in AMS 191	14
Table 5.0 - Support Equipment in AMS 191	
Figure 5.0 – AMS 19 Two and Half Year Wind Rose1	15
Figure 6.0 – Plan view sketch showing a 500m radius around Firebag station	16

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

	Station Number and Name	AMS 19 - Firebag Page 252 of 35
Page 4	Installation Date	August 1, 2014
of 16	Last Update Date	March 10, 2016
	Revision	1.00

						W	BE/	A A	M	BIE	NT	All	RM	ÓN	IIT	DR	NG	i N	ETV	VÔ	RK														
		WBEA Program	m - X																	Er	hand	ed D	epos	ition	Prog	ram	- X								
					(CONT	INUC	DUS N	/ONI	TOR	ED PA	RAN	IETER	S															IN	ITEGR	ATE	DSAI	ИРLII	NG	
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	O 3	NOx	NO	NO ₂	NH3	co	PM ₂₅	THC	NMHC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/O	C SASS	Dichot	PMLO	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		Х	Х	Х	X	Х	Х		X	Х	Х	Х	X	X	Х	Х	X		Х	X	Х	X		Х	Х	X	X	Х	X	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					Х	Х	Х		Х	Χ												
Lower Camp	3	Meteorological																	X	Х	X	Х	X												
Buffalo Viewpoint	4	Compliance	Х	X									X					Х	X	X		X	X												
Mannix	5	Compliance/Meteorological	Х	X									X					Х	X	X	X	X	X									X		X	X
Patricia McInnes	6	Health	Х		Х	Х	X	X	X	X		X	X	X	X			Х	X	X		X	X				X				Х	X	X	Х	X
Athabasca Valley	7	Health	Х		Х	Х	X	X	X		X	X	X	X	X			Х	Х	X		X	X			Х					Х	X	X	Х	X
Fort Chipewyan	8	Background/Health	Х			Х	Х	Х	Х			Х						Х	Х	Х		Х	Χ	Х	X		Х								
Barge Landing	9	Attribution			Х								X					Х	Х	Х		Х	Χ			Х							X		
Lower Camp B	11	Compliance	Х	Х									Х					Х	Х	Х		Х	X									X		X	X
Fort McKay South	13	Attribution	Х		Х	Х	X	Χ	X			X	X					Х	X	X		Х	Χ								Х	X	X	X	X
Anzac	14	Attribution	Х		Х	Х	Х	X	X			Х	Х	X	X			Х	Х	X		X	X	X	Х		Х				Х	X	X	Х	
CNRL - Horizon	15	Compliance	Х		Х		Х	Х	Х			Х	X					Х	Х	Х		Х	Х	Х			Х				Х		Х		
Shell Muskeg River	16	Compliance	Х				X	X	X			X	X					Х	X	X		X	X			Х					Х				
Wapasu Creek	17	Compliance	Х	Х		Х	Х	Х	Х			Х	Х					Х	Х	Х	X	Х	Χ				Х			X				X	X
Conklin	18	Background	Х		Х	Х	X	X	Х			X	X	X	X	X		Х	X	X		X	X	X	X		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	Х			Х	Х	Х				Х					Х	Х	Х		Х	Χ												
Brion Energy	20	Compliance	Х	Х			X	Х	Х				X					Х	X	Х		Х	X				Х								
Ĉe novus Ĉhristi na Lake	500	Porta ble-Complia nce	Х	Х		Х	X	Х	Х			X						Х	Х	X		Х	Х												
Stat Oil Leismer	501	Porta ble-Complia nce	Х	Х			Х	X	Х									Х	Х	Х		Х	X												
ConocoPhillips Surmont	502	Porta ble-Complia nce	Х	Х			Х	Х	Х									Х	X	Х		Х	X												
HEMP	104	Porta ble-He alth			Х								X	Х	Х			Х	Х	Х		Х	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

		Station Number and Name	AMS 19 - Firebag Page 253 of 35
	Page 5	Installation Date	August 1, 2014
	of 16	Last Update Date	March 10, 2016
WBEA		Revision	1.00

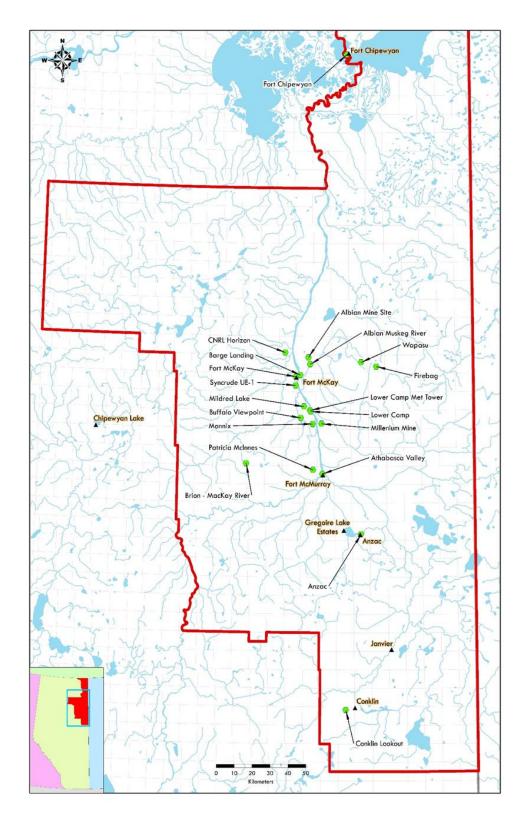


Figure 1.0 – WBEA Monitoring Network Sites

AMS 19 - Firebag Station Details

General Site Information

The Firebag station was installed in 2014 as an Industrial station to monitor in the region of the Suncor Firebag facility. It is situated by the Noralta Lodge Camp.

Item			Descripti	on		
Station Information	·					
Station ID	AMS 19					
Station Name	Firebag					
General description	The site is loca	ted north	neast of the N	oralta Lodge	е	
Station Install Date	July 1, 2014					
Station Origin	Purchased nev	N				
Station Commissioned by	WBEA					
Site Location Information						
Site Preparation	Level limeston	e pad				
Site Preparation completed by	Suncor					
Closest Community	N/A					
Municipality	Regional Mun	icipality o	f Wood Buffal	0		
Municipal Population	125,032 - 201	5				
Station Coordinates	57°14′14.34″N	I	North	110°54′0.:	16"W	West
Elevation	587 m					
Station Address	NA					
Station Type	Industrial					
Area Land Use	SAGD					
Angle of elevation to nearby buildings	0 degrees					
Average building height in area	NA					
Airflow Restrictions	North	no	Ea	ast	no	
(yes/no)	South	no	Ŵ	/est	no	_
Nearest Tree	Distance		10 meters	Height		5 meters
Sample Manifold Type	All glass manif	old syste	m			
Meteorological Tower Information	Height	10 r	neters			
	Туре	Alur	na crank-up t	ower		
	Position	Atta	iched to South	n end of mo	nitorin	g shelter

Table 2.0 – Station Information

	Local Source Information												
Туре		Distan	се		Description								
Water treatment	plant	123me statior	etres East of the moni	toring	Water treatment plant for Noralta Lodge								
Water treatment	plant holding ponds	10m SI	E of station		2 ponds with water								
Noralta Lodge		230m :	SE of station		Housing Camp								
Name	Туре		Traffic Volume	Distar	nce (m)	Description							
Roadways	Access road		low	2m		Gravel access roads							
Bus Parking	Parking Lot		Medium	56m		Buses parking lot							
Roadway	Access road		High	70m		Main Road around							
						the camp							

Table 3.0 – Local Source Information

		Station Number and Name	AMS 19 - Firebag Page 255 of 35
	Page 7	Installation Date	August 1, 2014
	of 16	Last Update Date	March 10, 2016
WBEA		Revision	1.00

		Station Number and Name	AMS 19 - Firebag Page 256 of 35
	Page 8	Installation Date	August 1, 2014
	of 16	Last Update Date	March 10, 2016
WBEA		Revision	1.00

Area Topographic Map

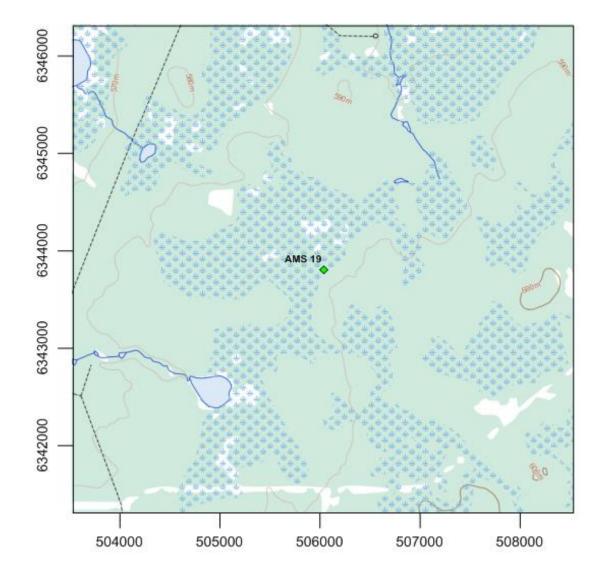


Figure 2.0 – Area Topographic map showing AMS 19 – Firebag Station

		Station Number and Name	AMS 19 - Firebag Page 257 of 35
	Page 9	Installation Date	August 1, 2014
	of 16	Last Update Date	March 10, 2016
WBEA		Revision	1.00

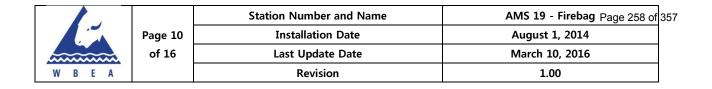

Aerial Photos

Figure 3.0 – Aerial photo showing area around AMS 19 – Firebag Station

Figure 3.1 – Aerial photo showing local area around AMS 19 – Firebag Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – monitoring station looking east

		Station Number and Name	AMS 19 - Firebag Page 259 of 35
	Page 11	Installation Date	August 1, 2014
	of 16	Last Update Date	March 10, 2016
WBEA		Revision	1.00

Figure 4.2 – Environ looking north

Figure 4.3 – Environ looking east

		Station Number and Name	AMS 19 - Firebag Page 260 of 35
	Page 12	Installation Date	August 1, 2014
	of 16	Last Update Date	March 10, 2016
WBEA		Revision	1.00

Figure 4.4 – Environ looking south

Figure 4.5 – Environ looking west

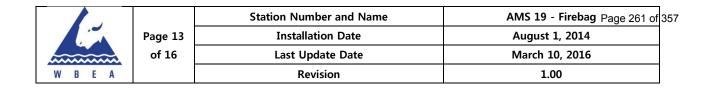


Figure 4.6 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.7 – Instrument Racks

Page 262 of 357

1		Station Number and Name	AMS 19 - Firebag
	Page 14	Installation Date	August 1, 2014
	of 16	Last Update Date	July 17, 2015
E A		Revision	0.00

Equipment Inventory

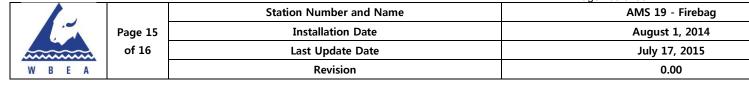

Param	neter Measured	Make	Model	Serial Number	Range	Detection Principle		g Height n)
				Number			Ground	Shelter
SO2	Sulfur Dioxide	Thermo Instruments	43i	1410661308	0 – 1000 ppb	Pulsed fluorescence	4	1
H2S	Hydrogen Sulfide	Thermo Instruments	450i	815129098	0 – 100 ppb	Pulsed fluorescence	4	1
NO2	Nitrogen Dioxide	Thermo Instruments	42i	1410661309	0 – 1000 ppb	Chemiluminescence	4	1
THC	Total Hydrocarbons	Thermo Instruments	51i-LT	1336160089	0 – 25 ppm	Flame Ionization	4	1
WS	Wind speed	Met One	010C-1	P22394	0 – 80m Km/hr	Chopped optical	10	
WD	Wind Direction	Met One	020C-1	P22885	0 – 360 degrees	Resistive (Potentiometer)	10	
AT	AT/RH	Vaisala	HMP155	G4340067	-40 to +50 degrees //0 – 100 %	Thermistor / Humicap	4	1

Table 4.0 - Analytical Equipment in AMS 19

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	6466
Zero Air Generator	Zero Air Generator	API	M701	4891
HVAC	Heating/cooling unit	BARD	NA	330B143093513-01
Shelter / Building	8' x 16' skid building	Intercontinental Truck Body	NA	1416269
Calibrator	Gas dilution calibrator	Teledyne/API	T700	996

Table 5.0 - Support Equipment in AMS 19

Page 263 of 357

Wind Rose

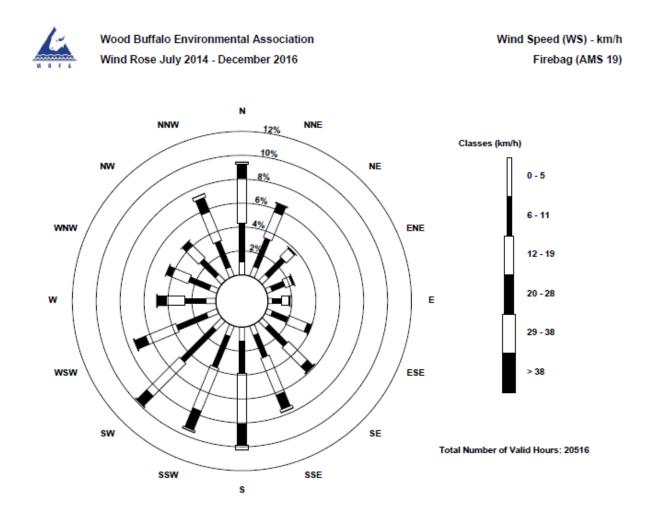


Figure 5.0 – AMS 19 Two and Half Year Wind Rose

Page 264 of 357

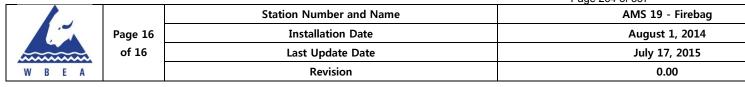


Figure 6.0 – Plan view sketch showing a 500m radius around Firebag station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 20 – Brion Mackay River

2017

Table of Contents

Network Background	3
AMS 20 – Brion Mackay River Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	144
Wind Rose	16

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 20 – Brion Mackay River	7
Figure 3.0 – Aerial photo showing AMS 20 – Brion Mackay River	8
Figure 4.0 – Exterior of monitoring station	9
Figure 4.1 – Environ looking south	9
Figure 4.2 – Environ looking north	. 10
Figure 4.3 Environ looking east	. 10
Figure 4.4 – Environ looking west	. 11
Figure 4.5 – Indoor sample manifold setup and outdoor sample inlet	. 11
Figure 4.6 – Instrument rack	. 12
Figure 4.7 – Pump cabinet	. 12
Figure 4.8 – Setup of the MET tower	. 13
Table 4.0 - Analytical Equipment in AMS 20	. 14
Table 5.0 - Support Equipment in AMS 20	. 15
Figure 5.0 –AMS 20 One Year Wind Rose	. 16
Figure 6.0 – Plan view sketch showing a 500m radius around Brion station	. 17

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO₂, H₂S, TRS, O₃, NO_x, NO, NO₂, NH₃, CO, PM_{2.5}, THC, NMHC, and CH₄. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO₂, H₂S, O₃, NO_x, NO, NO₂, NH₃, PM_{2.5}, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM_{2.5}, PM₁₀, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

					-	W	BE/	A A	M	BIE	NT	All	RN	101	NIT(OR	ING	i N	ETV	NO	RK		-						-		-				
		WBEA Program	m - X									Enhanced Deposition Program - X																							
					C	CONT	INUC)US N	/ION	ITOR	ED P/	ARAN	1ETER	S															IN	TEGR	RATE) SAI	MPLI	NG	
STATION NAME	STATION #	TYPE	SO ₂	H_2S	TRS	03	NO _x	NO	NO ₂	NH ₃	CO	PM _{2.5}	THC	NMHC	CH ₄	PAH	BTEX	Calib	WS	WD	vws	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PM ₁₀	PM _{2.5}	VOC	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		Χ	Х	Х	X	Х	Х		X	X	Х	Х	X	X	X	X	X		Х	Х	Х	X		Х	Х	X	X	Х	Х	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					Х	Х	X		Х	Х												
Lower Camp	3	Meteorological																	Х	X	Х	Х	Х												
Buffalo Viewpoint	4	Compliance	Х	Х									Х					Х	X	X		Х	Х												
Mannix	5	Compliance/Meteorological	Х	Х									Х					Х	Х	X	Х	Х	Х									X		X	X
Patricia McInnes	6	Health	Х		X	Х	Х	X	Х	Х		X	Х	Х	Х			X	X	X		Х	Х				Х				X	Х	Х	Х	Х
Athabasca Valley	7	Health	Х		X	Х	Х	X	Х		X	X	Х	Х	Х			X	X	X		Х	Х			X					X	Х	Х	Х	Х
Fort Chipewyan	8	Background/Health	Х			Х	Х	X	Х			X						X	X	X		Х	Х	Х	Х		Х								
Barge Landing	9	Attribution			X								Х					X	X	X		Х	Х			X							Х		
Lower Camp B	11	Compliance	Х	Х									Х					Х	Х	X		Х	Х									X		X	X
Fort McKay South	13	Attribution	Х		Х	Х	Х	Х	Х			X	Х					Х	Х	X		Х	Х								Х	X	Х	X	X
Anzac	14	Attribution	Х		X	Х	Х	Х	Х			X	Х	Х	Х			Х	Х	X		Х	Х	Х	Х		Х				Х	Х	Х	Х	
CNRL - Horizon	15	Compliance	Х		Χ		Х	Х	Х			X	Х					Х	Х	X		Х	Х	Х			Х				Х		Х		
Shell Muskeg River	16	Compliance	Х				Х	Х	Х			X	Х					Х	Х	X		Х	Х			Χ					Х				
Wapasu Creek	17	Compliance	Х	Х		Х	Х	Х	Х			X	Х					Х	Х	Χ	Х	Х	Х				Х			X				X	X
Conklin	18	Background	Х		Χ	Х	Х	Х	Х			X	Х	Х	Х	X		Χ	X	Χ		Х	Х	Х	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	Х			Х	Х	Х				Х					Х	Х	X		Х	Х												
Brion Energy	20	Compliance	Х	Х			Х	Х	Х				Х					Х	X	Х		Х	Х				Х								
Cenovus Christina Lake	500	Portable-Compliance	Х	Х		Х	Х	Х	Х			X						Х	X	Х		Х	Х												
Stat Oil Leismer	501	Portable-Compliance	Х	Х			Х	Х	Х									Х	X	X		Х	Х												
ConocoPhillips Surmont	502	Portable-Compliance	Х	Х			Х	Х	Х									Х	X	X		Х	Х												
HEMP	104	Portable-Health			Х								Х	Х	Х			Х	X	X		Х	Х												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

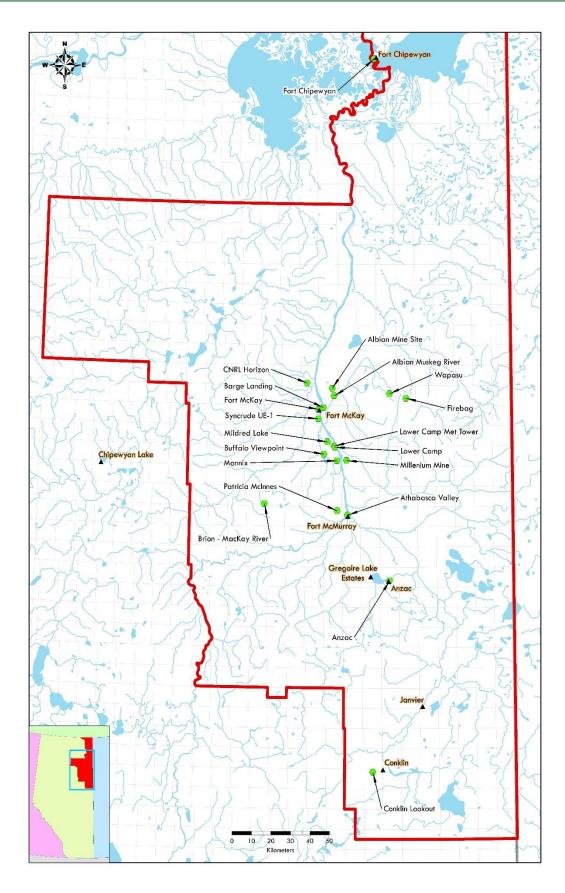


Figure 1.0 - WBEA Monitoring Network Sites

AMS 20 - Brion Mackay River Station Details

General Site Information

The Brion Mackay River station was installed in 2016 as a compliance station. It is located 30 km northwest of Fort McMurray at the Brion Energy facility.

Item	Description			
Station ID	AMS 20			
Station Name	Brion Mackay Riv	er		
General description	Located south of	the Brion SAGD proje	ect, about 1 kmm west o	of well pad AH.
Community	NA			
Station Coordinates	56°46′45.86″	North	112°5′19.79″	West
Station elevation	500			Meters
Station Address	NA			
Station Type	Compliance			
Initial Commission Date	February 01, 2016	6		
Area Land Use	Oil sands lease / I	ndustrial		
Angle of elevation to nearby	0 degrees			
buildings				
Average building height in	NA			
area				
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	30 metres	Height	10 metres
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 metres		
Information	Туре	Aluma crank-up	o tower	
	Position	Attached to No	orth end of monitoring s	helter
Station Install Date	January 2016			
Station Origin	Purchased new			
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре			се		Description			
SAGD operations		Approx	x.1 Km east		Well pad AH.			
Pond		300 m west			Open water pond			
Name	Туре		Traffic Volume	Distar	nce (m)	Description		
Roadways	Access road		low 30			Gravel access roads		
Roadways	adways Access road		Low	5		Temporary winter		
						road		

Table 3.0 – Local Source Information

Area Topographic Map

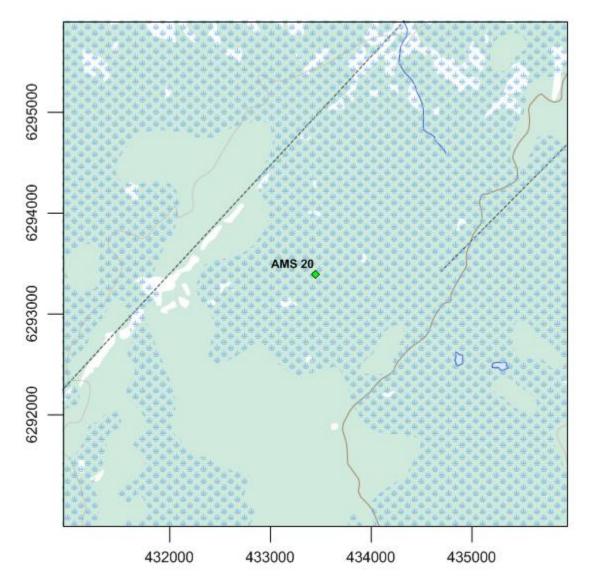


Figure 2.0 – Area Topographic map showing AMS 20 – Brion Mackay River

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 20 – Brion Mackay River

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Environ looking south

Figure 4.2 – Environ looking north

Figure 4.3 Environ looking east

Figure 4.4 - Environ looking west

Figure 4.5 – Indoor sample manifold setup and outdoor sample inlet

Figure 4.6 – Instrument rack

Figure 4.7 – Pump cabinet

Figure 4.8 – Setup of the MET tower

Equipment Inventory

Deven	arameter Measured Make		Madal	Coriol Number	Damaa	Data ati an Drinain la	Sampling	Height (m)
Paran	neter Measured	ічаке	Model	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulfur Dioxide	Thermo Instruments	43i	JC1501301450	0-1000ppb	Pulsed Fluorescence	4	1
H2S	Hydrogen Sulfide	Teledyne API	T101	196	0-100ppb	Pulsed Fluorescence	4	1
NO2	Nitrogen Dioxide	Thermo Instruments	42i	1505164379	0-1000ppb	Chemiluminescence	4	1
THC	Total Hydrocarbons	Thermo Instruments	51i-LT	1501663727	0-50ppm	Gas Chromatography and Flame Ionization	4	1
AT/RH	Ambient temperature and relative humidity.	Vaisala	HMP155	K14200412014	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	1
WS	Wind speed	Met One	010C-1	A3111	0-80kph	Chopped optical	10	
WD	Wind direction	Met One	020C-1	N9937	0-360 degrees	Resistive (potentiometer)	10	

Table 4.0 - Analytical Equipment in AMS 20

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	9627
ZAG	Zero Air Generator	Teledyne API	T701	4766
HVAC	Heating and Air Conditioning system. Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring trailer	ITB	NA	ITB-15-16552
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	T700	1220

Table 5.0 - Support Equipment in AMS 20

Wind Rose

Wood Buffalo Environmental Association Wind Rose January 2016 - December 2016 Wind Speed (WS) - km/h Brion MacKay River (AMS 20)

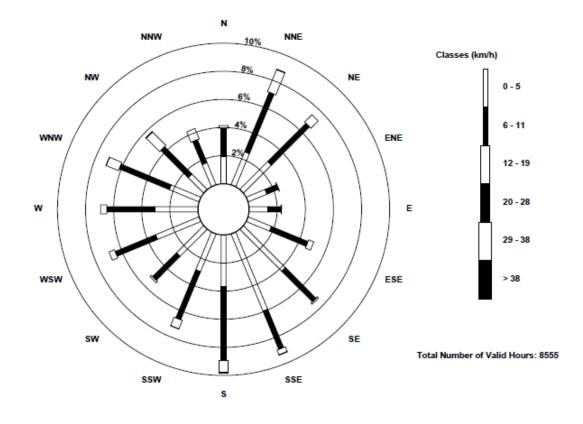
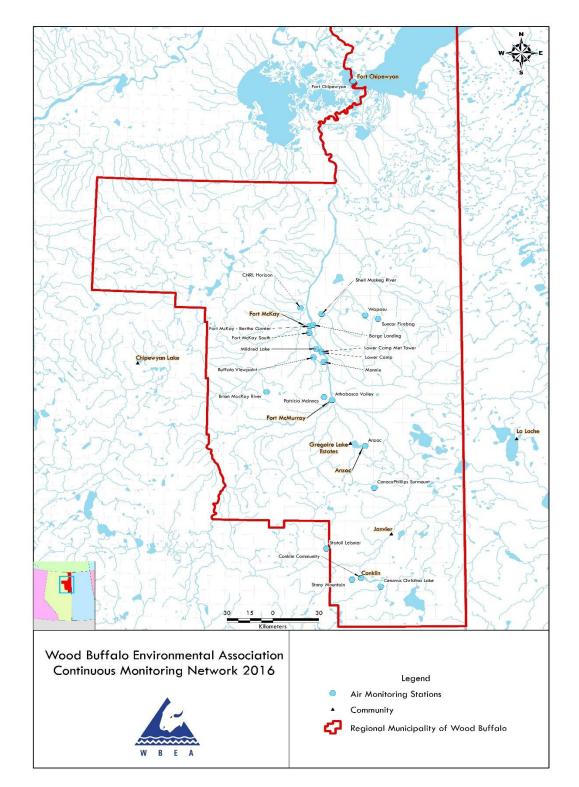


Figure 5.0 – AMS 20 One Year Wind Rose

Figure 6.0 – Plan view sketch showing a 500m radius around Brion station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 21 – CONKLIN COMMUNITY


Table of Contents

WBEA Network	3
AMS 21 – Conklin Community Station Details	
General Site Information	4
Area Topographic Map	5
Aerial Photo	6
Site photos	7
Equipment Inventory	12
Wind Rose	14

Tables and Figures

Figure 1.0 – WBEA Monitoring Network Sites	3
Table 1.0 – General Site Information	1
Table 2.0 – Local Source Information	1
Figure 2.0 – Area Topographic map showing AMS 21 – Conklin Community Station	5
Figure 3.0 – Aerial photo showing AMS 21 – Conklin Community Station	5
Figure 4.0 – Exterior of monitoring station	7
Figure 4.1 – Exterior of AMS 21 looking east	
Figure 4.2 – Environ looking north	
Figure 4.3 – Environ looking south	3
Figure 4.4 – Environ looking west)
Figure 4.5 – Environ looking east)
Figure 4.6 – Outdoor Sample Inlet & Indoor Sample Manifold10)
Figure 4.7 – MET tower10)
Figure 4.8 – Instrument racks	L
Table 3.0 - Analytical Equipment in AMS 2112	2
Table 4.0 - Support Equipment in AMS 2113	3
Figure 5.0 – AMS 21 8 Months Wind Rose14	1
Figure 6.0 – Plan view sketch showing a 500m radius around Conklin Community station	5

WBEA Network

The map below shows the location of each air monitoring station.

Figure 1.0 – WBEA Monitoring Network Sites

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

AMS 21 - Conklin Community Station Details

General Site Information

The Conklin Community Air Monitoring Station (AMS) is located near the Conklin Resource Development Advisory Committee (CRDAC) office, on Father Mercredi's Trial, in the community of Conklin.

Item	Description								
Station ID	AMS 21	AMS 21							
Station Name	Conklin Commun	Conklin Community							
General description	This is a community station to monitor the air quality where the residents live work and play								
Community	Conklin								
Station Coordinates	55°37'56.39"	North	111° 4'43.84"	West					
Station elevation	562			Meters					
Station Address	114 Father Mercredi Trail								

Station Type	Community			
Initial Commission Date	April 01, 2016			
Area Land Use	Residential			
Angle of elevation to nearby buildings	0 degrees			
Average building height in area	4 Metres			
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	6 meters	Height	6 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-u	ip tower	
	Position	Attached to N	orth end of monitorir	ng shelter
Station Install Date	March 20, 2016			
Station Origin	Originated as a cor community statior	•	uth Wood Buffalo Mo	onitoring Plan. It is a
Site Preparation	Level gravel pad			

Table 1.0 – General Site Information

Localized Sources

Туре		Distance			Description	
Admin Building		20 meters towards south		Conklin Resource Development		
					Advisory Comr	nittee Office
Wetland		10 meters towards North and East			Peat bog / Marshes – Variety of reeds	
					and grasses.	
Rail track		15 meters to the West			Railway track	
Name	Туре	-	Traffic Volume	Distan	ce (m)	Description
Roadways	Access		Low	70 meters to the		Gravel/dirt road
				south		

Table 2.0 – Local Source Information

Area Topographic Map

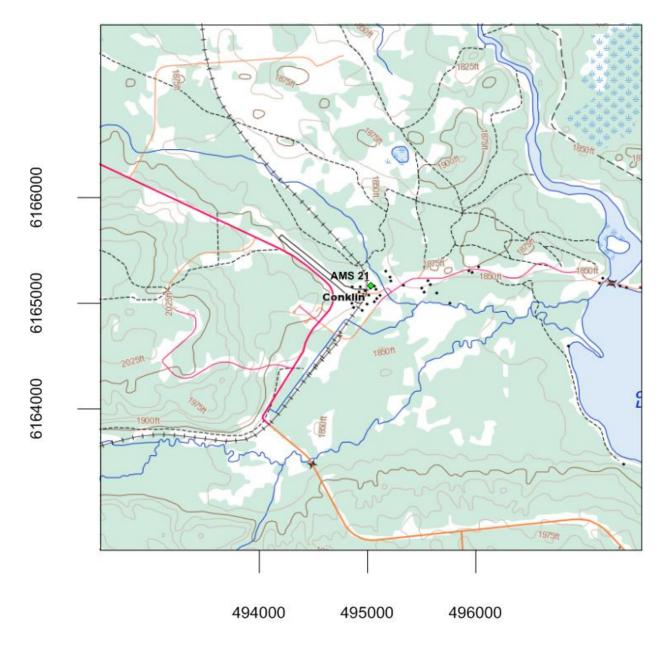


Figure 2.0 – Area Topographic map showing AMS 21 – Conklin Community Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 21 – Conklin Community Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Exterior of AMS 21 looking east

Figure 4.2 – Environ looking north

Figure 4.3 – Environ looking south

Figure 4.4 - Environ looking west

Figure 4.5 - Environ looking east

Figure 4.6 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.7 – MET tower



Figure 4.8 – Instrument racks

Demonst		NA -1	NA - J - J	Serial	D		Samı Heigh	
Paramete	er Measured	Make	Model	Number	Range	Detection Principle	Groun d	Shelt er
SO2	Sulphur Dioxide	Thermo Instrumen ts	43i	1428701363	1428701363 0- 1000ppb Pulsed Fluorescence		4	1
TRS	Total Reduced Sulfur	Thermo Instrumen ts	43i-TLE	1236656116	0-100ppb	Pulsed Fluorescence	4	1
TRS convert er	Thermal oxidizer	CD Nova	CDN10 1	NA	NA	Thermal Oxidizer paired with 43iTLE for TRS measurement		
NOx	Nitrogen Dioxide	Thermo Instrumen ts	42i	1501663731	0- 1000ppb	Chemiluminescence	4	1
NMHC	Non- Methane Hydrocarb on	Thermo Instrumen ts	55i			Gas Chromatography and Flame Ionization	4	1
03	Ozone	Thermo Instrumen ts	42i	150663734	0-500 ppb	UV Photometric	4	1
PM2.5	PM <2.5 um in diameter	Thermo Instrumen ts	5030	CM-0404	0- 1000ug/ m3	Synchronized Nephelometric/Radiom etric Particulate Mass Monitor	4	1
RH/Tem p	Relative humidity / external temp	Vaisala	HMP15 5	K287001120 14	Temp: - 80 - +60 C RH: 0- 100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
WS	Wind Speed<10u m	Met One	010C-1	A1406	0-80kph	Chopped optical	10	
WD	Wind Direction	Met One	20C-1	P22886	0-360 degrees	Resistive (potentiometer)	10	

Equipment Inventory

Table 3.0 - Analytical Equipment in AMS 21

Description	Make	Model	Serial Number
Datalogger	Campbell Scientific	CR3000	9628
Zero Air Generator	Teledyne API	T701	5611
Air Conditioner/Heater .Wall mount unit	BARD	2 Ton	NA
Air monitoring trailer	Intercontinental Truck Body	Standard 10 x 20	ITB 14 16423
Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	T700	2658
-	Datalogger Zero Air Generator Air Conditioner/Heater .Wall mount unit Air monitoring trailer Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference	DataloggerCampbell ScientificZero Air GeneratorTeledyne APIAir Conditioner/Heater .Wall mount unitBARDAir monitoring trailerIntercontinental Truck BodyUses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily referenceTeledyne API	DataloggerCampbell ScientificCR3000Zero Air GeneratorTeledyne APIT701Air Conditioner/Heater .Wall mount unitBARD2 TonAir monitoring trailerIntercontinental Truck BodyStandard 10 x 20Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily referenceTeledyne API

Table 4.0 - Support Equipment in AMS 21

Wind Rose

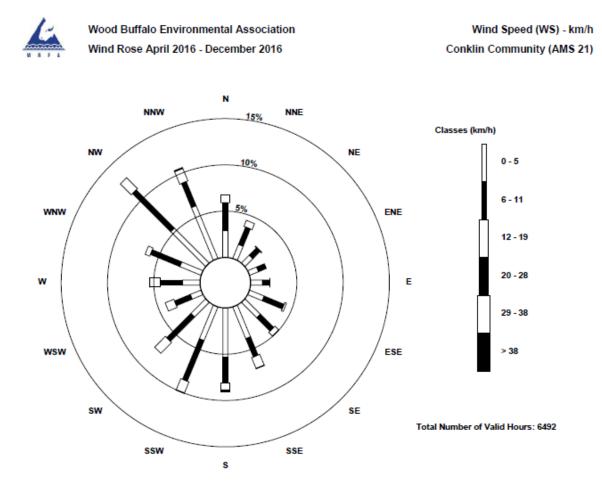


Figure 5.0 – AMS 21 8 Months Wind Rose

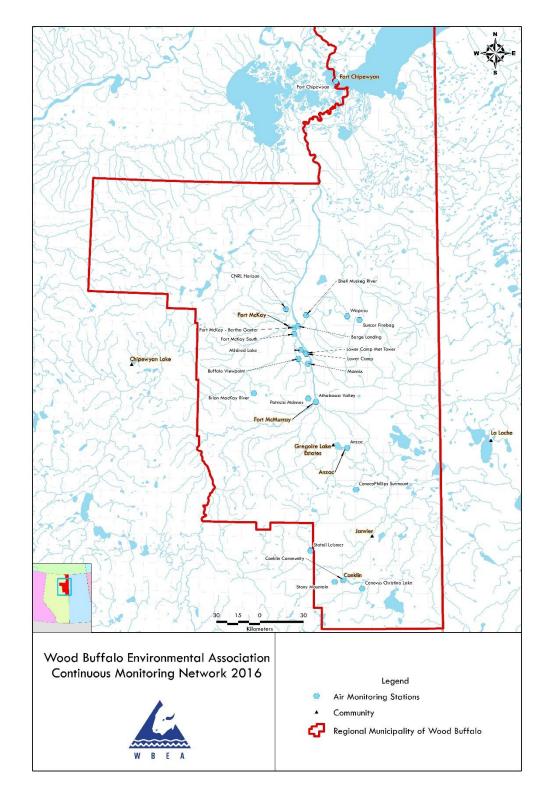


Figure 6.0 – Plan view sketch showing a 500m radius around Conklin Community station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 22 – JANVIER

2017


Table of Contents

WBEA Network	3
AMS 22 – Janvier Community Station Details	
General Site Information	4
Area Topographic Map	6
Aerial Photo	7
Site photos	8
Equipment Inventory	13
Wind Rose	15

Tables and Figures

Figure 1.0 – WBEA Monitoring Network Sites
Figure 1.0 – WBEA Monitoring Network Sites
Table 1.0 – General Site Information5
Table 2.0 – Local Source Information5
Figure 2.0 – Area Topographic map showing AMS 21 – Conklin Community Station
Figure 3.0 – Aerial photo showing AMS 22 – Janvier Community Station7
Figure 4.0 – Exterior of monitoring station8
Figure 4.1 – Exterior of AMS 22 looking north
Figure 4.2 – Environ looking north
Figure 4.3 – Environ looking south9
Figure 4.4 – Environ looking west
Figure 4.5 – Environ looking east
Figure 4.6 – Outdoor Sample Inlet & Indoor Sample Manifold11
Figure 4.7 – MET tower
Figure 4.8 – Instrument racks
Table 3.0 - Analytical Equipment in AMS 22
Table 4.0 - Support Equipment in AMS 2214
Figure 5.0 – Nearby site (AMS 21) 9 months Wind Rose
Figure 6.0 – Plan view sketch showing a 500m radius around the Janvier Community station

WBEA Network

The map below shows the location of each air monitoring station.

Figure 1.0 – WBEA Monitoring Network Sites

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

AMS 22 - Janvier Community Station Details

General Site Information

The Janvier Air Monitoring Station (AMS) is a community site located at the intersection of Teed Avenue and Nokohoo Road in the hamlet of Janvier, within the Regional Municipality of Wood Buffalo.

Item	Description	Description											
Station ID	AMS 22	AMS 22											
Station Name	Janvier Commun	Janvier Community											
General description		This station is intended to collect ambient air quality data from a local community perspective to measure where people live, work and play.											
Community	Janvier												
Station Coordinates	55°54'11.67"	North	110° 44'59.08"	West									
Station elevation	471			Meters									
Station Address	Block 4; Lot 135 -	Adjacent to Noko	hoo Road between Teed A	ve and Lapouse Ave.									
Station Type	Community												

Initial Commission Date	January 01, 2017			
Area Land Use	Residential			
Angle of elevation to nearby buildings	10°			
Average building height in area	4 metres			
Airflow Restrictions	North	no	East	No
(yes/no)	South	no	West	No
Nearest Tree	Distance	20 meters	Height	25 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-u	o tower	
	Position	Attached to we	est end of monitoring	g shelter
Station Install Date	October 2016			
Station Origin		•		e WBEA strategic plan and proved in the 2015/16
Site Preparation	Level gravel pad			

Table 1.0 – General Site Information

Localized Sources

Туре		Distan	се		Description						
Residence		20 met	ters towards west		Residential housing area						
Main road in town		25 met	ters east		Main road						
Name	Туре	-	Traffic Volume	Distan	ce (m)	Description					
Roadway	Main access		Low	25 me	ters	Paved					

Table 2.0 – Local Source Information

Area Topographic Map

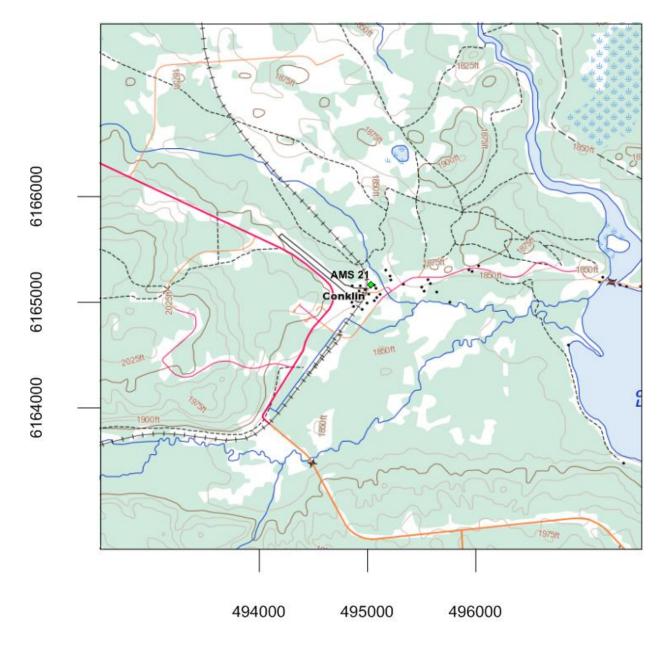


Figure 2.0 – Area Topographic map showing AMS 21 – Conklin Community Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 22 – Janvier Community Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Exterior of AMS 22 looking north

Figure 4.2 – Environ looking north

Figure 4.3 – Environ looking south

Figure 4.4 –Environ looking west

Figure 4.5 - Environ looking east

Figure 4.6 – Outdoor Sample Inlet & Indoor Sample Manifold

Figure 4.7 – MET tower

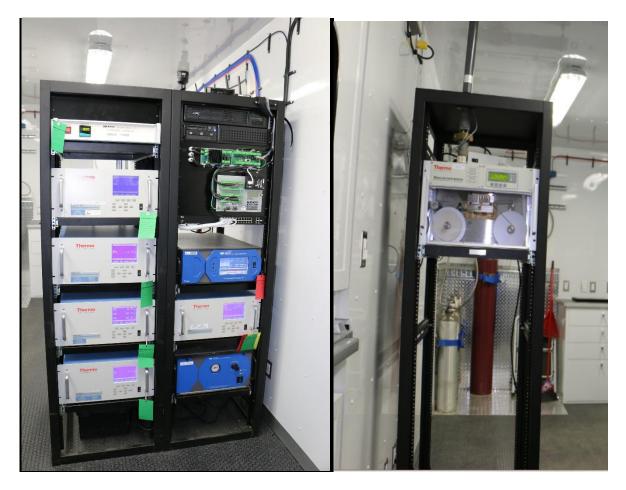


Figure 4.8 – Instrument racks

Para	meter	Make	Mode	Serial	Panga	Detection Principle	1	npling ght (m)
Mea	sured	wake	Ι	Number	Range	Detection Principle	Grou nd	Shelter
SO2	Sulphur Dioxide	Thermo Instruments	43i	1152430006	0- 1000ppb	Pulsed Fluorescence	4	1
TRS	Total Reduced Sulfur	Thermo43i- 11516800310- 100ppbPulsed Fluoresc		Pulsed Fluorescence	4	1		
TRS convert er	Thermal oxidizer	CD Nova	CD Nova CDN1 503		NA	Thermal Oxidizer paired with 43iTLE for TRS measurement		
NOx	Nitrogen Dioxide	Thermo 42i 1228254994 O- 1000ppb C		Chemiluminescence	4	1		
NMHC	Non- Methane Hydrocar bon	Thermo Instruments	55i	1501663728	0-50ppm	Gas Chromatography and Flame Ionization	4	1
03	Ozone	Thermo Instruments	42i	1227254861	0-500 ppb	UV Photometric	4	1
PM2.5	PM <2.5 um in diameter	Thermo Instruments	5030	E-1333	0- 1000ug/ m3	Synchronized Nephelometric/Radiome tric Particulate Mass Monitor	4	1
RH/Tem p	Relative humidity / external temp	Vaisala	HMP1 55	N2860003 C		4		
WS	Wind Speed<10 um	Met One	Net One 010C- 1 U11126		0-80kph	Chopped optical	10	
WD	Wind Direction	Met One	20C-1	20C-1 U11346 (Resistive (potentiometer)	10	

Equipment Inventory

Table 3.0 - Analytical Equipment in AMS 22

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	13618
ZAG	Zero Air Generator	Teledyne API	T701	135
HVAC	Air Conditioner/Heater .Wall mount unit	BARD	2 Ton	NA
Shelter / Building	Air monitoring trailer	Intercontinental Truck Body	8 x 12	1516494
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	T700	2464
	points.			

Table 4.0 - Support Equipment in AMS 22

Wind Rose

A wind rose will be provided from a nearby site.

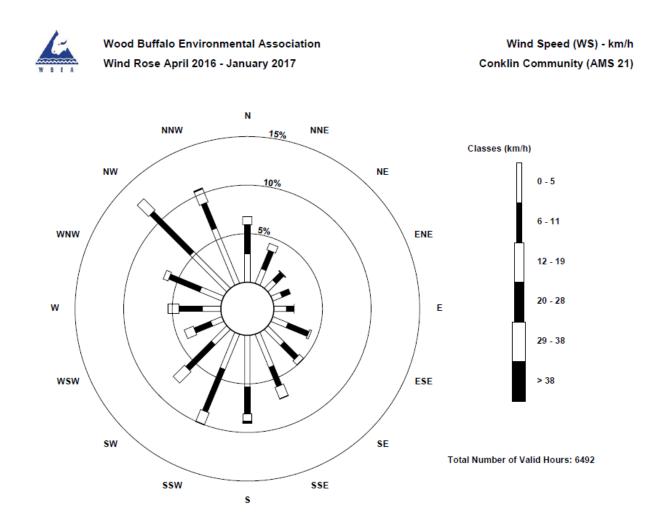


Figure 5.0 – Nearby site (AMS 21) 9 months Wind Rose

Figure 6.0 – Plan view sketch showing a 500m radius around the Janvier Community station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 103 – NISKA

(Portable Monitoring Station – AMS 500)

Table of Contents

Network Background	3
AMS 103 – Niska Station Details	6
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	14

Tables and Figures

.4
5
6
6
.7
8
9
9
10
10
1
1
12
12
13
13
14
15
5.6 .7 .9 .9 .0 .10 .11 .12 .13 .13

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oilsands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	All	RM	O	NIT(ÓR	INC	δN	ETV	NŌ	RK					_		_							
		WBEA Program	n - X																	Er	nhand	ed D	epos	ition	Prog	gram	- X								
	CONTINUOUS MONITORED P									ED P A	RAMETERS													INTEGRATED SAMPLING											
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	O 3	NOx	NO	NO2	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLO	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		X	X	X	X	X	X		X	X	Х	X	X	X	X	X	X		X	X	Х	X		X	X	X	X	Х	X	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									Х					X	X	X		Х	X												
Lower Camp	3	Meteorological																	X	X	X	X	X												
Buffalo Viewpoint	4	Compliance	Х	X									Х					Х	X	X		Х	X												
Mannix	5	Compliance/Meteorological	Х	X									X					X	X	X	X	X	X									X		X	X
Patricia McInnes	6	Health	Х		Х	Х	X	X	Х	X		X	Х	Х	Х			Х	X	X		Х	X				Х				Х	X	X	Х	X
Athabasca Valley	7	Health	Х		X	X	X	X	X		X	X	X	X	X			X	X	X		X	X			X					X	X	X	X	X
Fort Chipewyan	8	Background/Health	Х			X	X	X	Х			X						X	X	X		Х	X	Х	Х		X								
Barge Landing	9	Attribution			X								X					X	X	X		Х	X			Х							X		
Lower Camp B	11	Compliance	Х	Х									X					X	Х	X		Х	X									X		X	X
Fort McKay South	13	Attribution	Х		X	X	X	X	X			X	X					X	X	X		X	X								X	X	X	X	X
Anzac	14	Attribution	Х		Х	Х	Х	X	Х			X	Х	Х	Х			X	Х	X		Х	X	X	Х		Х				Х	X	X	X	
ĆNRL - Horizon	15	Compliance	Х		X		X	X	X			X	X					X	X	X		X	X	X			X				X		X		
Shell Muskeg River	16	Compliance	Х				X	X	Х			X	Х					Х	X	X		Х	X			Х					Х				
Wapasu Creek	17	Compliance	Х	X		X	X	X	X			X	X					X	X	X	X	X	X				X			X				X	X
Conklin	18	Background	Х		Х	Х	X	X	Х			X	Х	Х	Х	X		Х	X	X		Х	X	Х	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	X			X	X	X				X					X	X	X		X	X												
Brion Energy	20	Compliance	Х	X			X	X	X				X					X	X	X		Х	X				X								
Cenovus Christina Lake	500	Porta ble-Compliance	Х	X		Х	X	X	Х			X						X	X	X		Х	X												
Stat Oil Leismer	501	Porta ble-Compliance	Х	X			X	X	Х									X	X	X		Х	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	X			X	X	X									X	X	X		X	X												
HEMP	104	Portable-Health			X								X	X	X			X	X	X		X	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

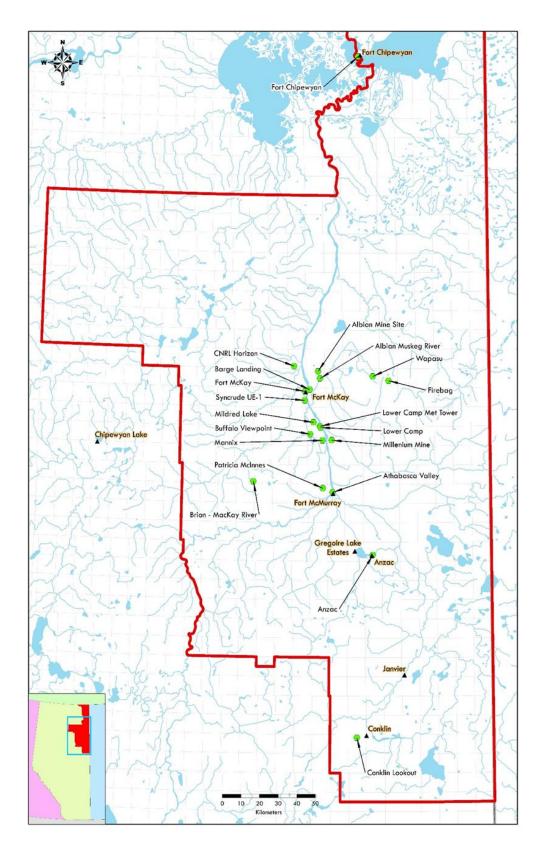


Figure 1.0 - WBEA Monitoring Network Sites

AMS 103 - Niska Station Details

General Site Information

The Niska Portable AMS is currently deployed at the Cenovus Christina Lake location. The Northern Lights station contains analyzers and sensors that continuously measure SO₂, H₂S, NOx, Wind speed, Wind direction, External temperature, and Relative humidity.

Item	Description							
Station ID	AMS 500							
Station Name	Niska							
General description	Located close to a non-operational well-pad 316 at Cenovus SAGD site.							
Community	NA							
Station Coordinates	55° 34' 44.00"	North	110° 52' 34.00"	West				
Station elevation	576			Meters				
Station Address	NA							
Station Type	Portable-Compliance							
Initial Commission Date	NA							
Area Land Use	Industrial – SAGD							
Angle of elevation to nearby buildings	0 degrees							
Average building height in area	0 meters							
Airflow Restrictions	North	no	East	No				
(yes/no)	South	No	West	No				
Nearest Tree	Distance	100 meters	Height	15 meters				
Sample Manifold Type	Glass							
Meteorological Tower	Height	10 meters						
Information	Type Aluma crank-up tower							
	Position	Position Attached to North end of monitoring shelter						
Station Install Date	November 27, 20	15						
Station Origin	NA							
Site Preparation	Level gravel pad							

Table 2.0 – General Site Information

Localized Sources

Туре		Distance			Description	
Well-pad.		100 m west			Non-operational well pad. Capped.	
Name	Туре		Traffic Volume	Distan	ce (m)	Description
Roadway	Dirt/gravel road		Medium	20		Used by workers to
						access many areas of
						the plant.

Table 3.0 – Local Source Information

Area Topographic Map

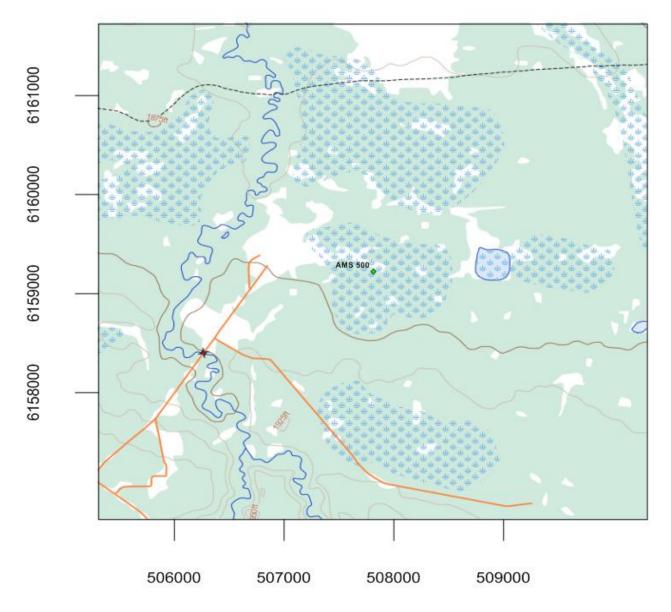


Figure 2.0 – Area Topographic map showing AMS 103 – Niska Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 103 – Niska Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Monitoring compound looking south

Figure 4.2 - Environ looking north

Figure 4.3 – Environ looking east

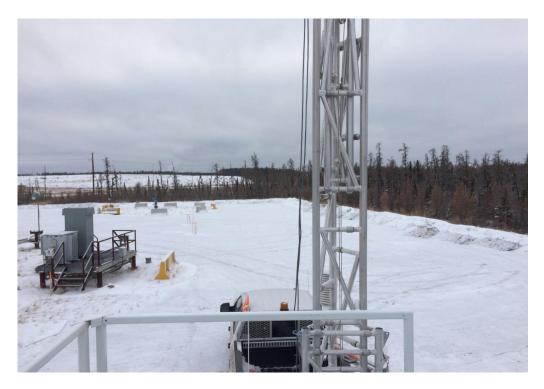


Figure 4.4 – Environ looking south

Figure 4.5 – Environ looking west

Figure 4.6 – Outdoor Sample Inlet and Indoor manifold setup

Figure 4.7 – Instrument rack

Equipment Inventory

Daran	neter Measured	Make	Model	Sorial Number	Panga	Dotoction Brinciplo	Sampling	Height (m)
Paran	neter weasured	IVIAKE	woder	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulfur Dioxide	Thermo Instruments	43i	1118148497	0-1000ppb	Pulsed Fluorescence	4	1
H2S	Hydrogen Sulfide	Thermo Instruments	43i-TLE	1008841400	0-100ppb	Pulsed Fluorescence	4	1
H2S converter		Thermo Instruments	340	328702539	NA		4	1
NOx	NO/NO2/NOx	Teledyne API	T200	723	0-1000ppb	Chemiluminesense	4	1
AT/RH	Ambient temp and relative humidity.	Vaisala	HMP155	NA	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
WS	Wind speed	Met One	010C-1	P22393	0-80kph	Chopped optical	10	
WD	Wind direction	Met One	020C-1	P10614	0-360 degrees	Resistive (potentiometer)	10	

Table 4.0 - Analytical Equipment in AMS 103

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	2575
ZAG	Zero Air Generator	Teledyne API	M701	4604
HVAC	Heating and air conditioning system. Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring portable	ITB	NA	ITB1316018
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	T700	1221

Table 5.0 - Support Equipment in AMS 103

Wind Rose

Wood Buffalo Environmental Association Wind Rose 2016

Wind Speed (WS) - km/h Cenovus - Christina Lake (AMS500)

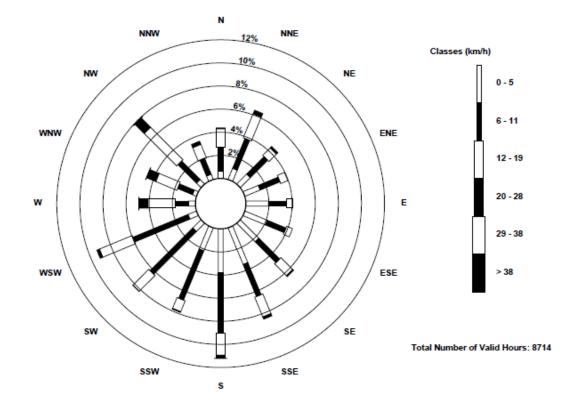


Figure 5.0 - AMS 500 2016 Wind Rose

Figure 6.0 – Plan view sketch showing a 500m radius around Niska – Cenovus Christina Lake station

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 101 – MAHIHKAN

(Portable Monitoring Station – AMS 501)

March 2016

Table of Contents

Network Background	3
AMS 101 – Mahihkan Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	14

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 101 – Mahihkan Station	7
Figure 3.0 – Aerial photo showing AMS 101 – Mahihkan Station	8
Figure 4.0 – Exterior of monitoring station	9
Figure 4.1 – Monitoring compound looking north	
Figure 4.2 – Environ looking north1	.0
Figure 4.3 – Environ looking east1	
Figure 4.4 – Environ looking south1	.1
Figure 4.5 –Environ looking west1	.1
Figure 4.6 – Outdoor Sample Inlet and Indoor manifold setup1	.2
Figure 4.7 – Instrument rack1	.2
Table 4.0 - Analytical Equipment in AMS 1011	.3
Table 5.0 - Support Equipment in AMS 1011	.3
Figure 5.0 – AMS 101 Five Year Wind Rose1	.4

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable monitoring stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oil Sands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	AI	RM	O	IIT	ÓR	INC	iΝ	ETV	NŌ	RK							_							
		WBEA Program	n - X																	Er	nhand	ed D	epos	ition	Prog	ram	- X								
					(CONT	INUC	DUS N	//ON	TOR	ED PA	ARAMETERS													INTEGRATED SAMPLING										
STATION NAME	STATION #	TYPE	\$O ₂	H_2S	TRS	O 3	NOx	NO	NO ₂	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLO	PM ₂₅	voc	PAH	PRECIP
Fort McKay - Bertha Ganter	1	Health	Х		X	Х	X	X	X	X		X	X	Х	Х	X	X	Х	Х	X		X	X	X	X		Х	Х	X	X	Х	X	XX	XX	XX
Mildred Lake	2	Compliance	Х	Х									X					Х	X	X		Х	X												
Lower Camp	3	Meteorological																	X	X	X	Х	X												
Buffalo Viewpoint	4	Compliance	Х	Х									X					Х	Х	X		Х	X												
Mannix	5	Compliance/Meteorological	X	Х									X					Х	X	X	X	X	X									X		X	X
Patricia McInnes	6	Health	X		X	X	X	X	Х	X		X	Х	X	X			Х	Х	X		Х	X				Х				Х	X	X	X	Х
Athabasca Valley	7	Health	Х		X	X	X	X	X		X	X	X	X	X			Х	X	X		X	X			Х					X	X	X	X	X
Fort Chipewyan	8	Background/Health	Х			X	X	X	X			X						Х	X	X		Х	X	X	Х		Х								
Barge Landing	9	Attribution			X								X					Х	X	X		X	X			Х							X		
Lower Camp B	11	Compliance	Х	Х									Х					Х	Х	X		Х	X									X		X	X
Fort McKay South	13	Attribution	Х		X	X	X	X	Х			X	X					Х	X	X		Х	X								Х	X	X	X	X
Anzac	14	Attribution	Х		Х	X	Х	X	Х			X	Х	Х	Х			Х	Х	X		Х	X	X	Х		Х				Х	X	X	X	
CNRL - Horizon	15	Compliance	Х		X		X	X	X			X	X					Х	X	X		X	X	X			X				X		X		
Shell Muskeg River	16	Compliance	Х				X	X	Х			X	Х					Х	Х	X		Х	X			Х					Х				
Wapasu Creek	17	Compliance	Х	Х		X	X	X	X			X	X					Х	X	X	X	Х	X				X			X				X	X
Conklin	18	Background	Х		X	Х	X	X	Х			X	Х	Х	Х	X		Х	Х	X		Х	X	X	Х		Х		X	X			X	X	X
Suncor Firebag	19	Compliance	Х	Х			X	X	X				X					Х	X	X		X	X												
Brion Energy	20	Compliance	Х	Х			X	X	Х				X					Х	X	X		Х	X				Х								
Cenovus Christina Lake	500	Porta ble-Compliance	Х	Х		X	X	X	X			X						Х	X	X		Х	X												
Stat Oil Leismer	501	Porta ble-Compliance	Х	Х			X	X	Х									Х	Х	X		Х	X												
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	Х			X	X	X									Х	X	X		X	X												
HEMP	104	Porta ble-He alth			X								X	X	X			Х	Х	X		Х	X												

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

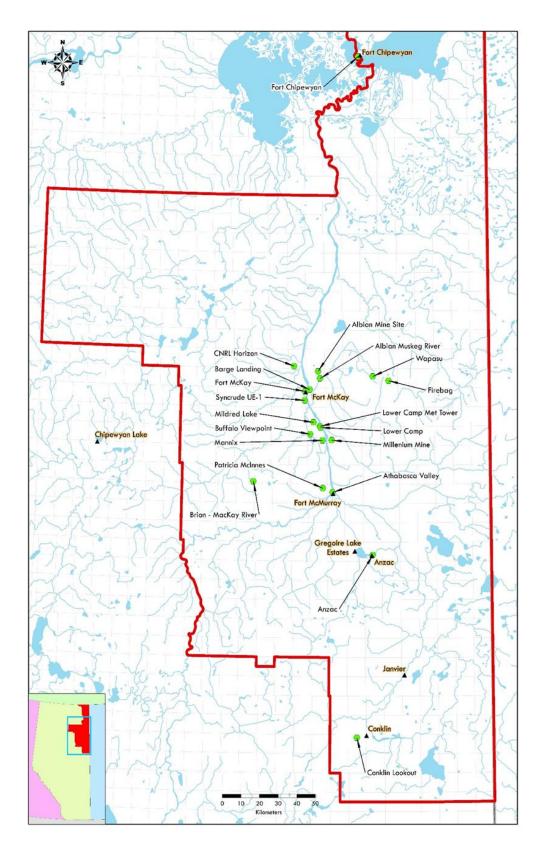


Figure 1.0 - WBEA Monitoring Network Sites

AMS 101 - Mahihkan Station Details

General Site Information

The Mahihkan Portable AMS is currently deployed at the Statoil Leismer site. The Mahihkan station contains analyzers and sensors that continuously measure SO₂, H₂S, NOx, Wind speed, Wind direction, External temperature, and Relative humidity.

Item	Description			
Station ID	AMS 501			
Station Name	Mahihkan			
General description	Located just outsid	le the main entrand	ce gate of Statoil Leismer S	SAGD plant site.
Community	NA			
Station Coordinates	55° 48' 46.5834"	North	111° 26' 25.962"	West
Station elevation	668			Meters
Station Address	NA			
Station Type	Portable-Complian	ce		
Initial Commission Date	NA			
Area Land Use	Industrial – SAGD			
Angle of elevation to nearby buildings	0 degrees			
Average building height in area	0 meters			
Airflow Restrictions	North	no	East	No
(yes/no)	South	No	West	No
Nearest Tree	Distance	50 meters	Height	15 meters
Sample Manifold Type	Glass			
Meteorological Tower	Height	10 meters		
Information	Туре	Aluma crank-u	p tower	
	Position	Attached to No	orth end of monitoring she	elter
Station Install Date	NA			
Station Origin	NA			
Site Preparation	Level gravel pad			

Table 2.0 – General Site Information

Localized Sources

Туре		Distand	ce		Description							
SAGD plant site		100 m	west		Statoils SAGD o	operations.						
Name	Туре		Traffic Volume	Distan	ce (m)	Description						
Roadway	Dirt/gravel road	d	Medium	15 met	ers	Used by workers to get access to the plant.						

Table 3.0 – Local Source Information

Area Topographic Map

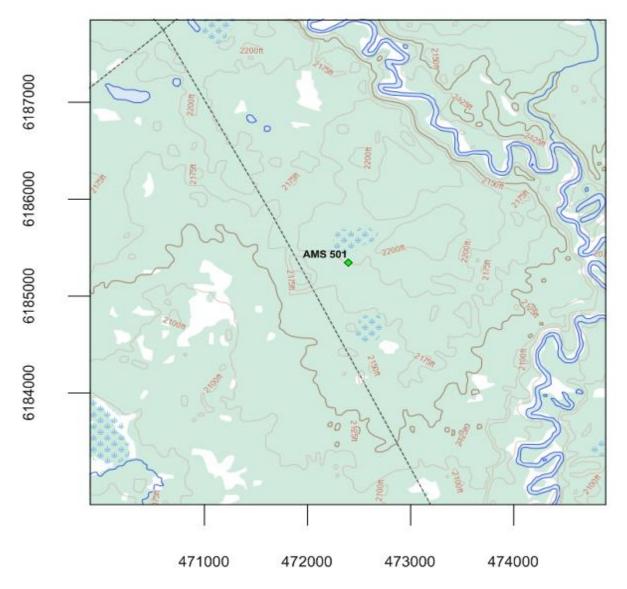


Figure 2.0 – Area Topographic map showing AMS 101 – Mahihkan Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 101 – Mahihkan Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Monitoring compound looking north

Figure 4.2 - Environ looking north

Figure 4.3 – Environ looking east

Figure 4.4 – Environ looking south

Figure 4.5 - Environ looking west

Figure 4.6 – Outdoor Sample Inlet and Indoor manifold setup

Figure 4.7 – Instrument rack

Equipment Inventory

Doror	meter Measured	Make	Model	Serial Number	Panga	Detection Principle	Sampling	Height (m)
Parar	neter Measured	IVIAKE	widdei	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulfur Dioxide	Teledyne API	T100	721	0-1000ppb	Pulsed Fluorescence	4	1
H2S	Hydrogen Sulfide	Thermo Instruments	450i	922436966	0-100ppb	Pulsed Fluorescence	4	1
NOx	NO/NO2/NOx	Thermo Instruments	42i	1118148496	0-1000ppb	Chemiluminesense	4	1
AT/RH	Ambient temp and relative humidity.	Vaisala	HMP155	KC2860019	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
WS	Wind speed	Met One	010C-1	P22395	0-80kph	Chopped optical	10	
WD	Wind direction	Met One	020C-1	R14656	0-360 degrees	Resistive (potentiometer)	10	

Table 4.0 - Analytical Equipment in AMS 101

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	2579
ZAG	Zero Air Generator	Teledyne API	M701	4522
HVAC	Heating and air conditioning system. Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring portable	ITB	NA	2C9UAB2G9B1044004
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Thermo Instruments	SABIO 4010	11581008

Table 5.0 - Support Equipment in AMS 101

Wind Rose

Figure 5.0 – AMS 101 Five Year Wind Rose

AMBIENT MONITORING STATION SITE DOCUMENTATION

AMS 102 – NORTHERN LIGHTS

(Portable Monitoring Station – AMS 502)

Table of Contents

Network Background	3
AMS 102 – Northern Lights Station Details	
General Site Information	6
Area Topographic Map	7
Aerial Photo	8
Site photos	9
Equipment Inventory	13
Wind Rose	14

Tables and Figures

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network	4
Figure 1.0 – WBEA Monitoring Network Sites	5
Table 2.0 – General Site Information	6
Table 3.0 – Local Source Information	6
Figure 2.0 – Area Topographic map showing AMS 102 – Northern Lights Station	7
Figure 3.0 – Aerial photo showing AMS 102 – Northern Lights Station	8
Figure 4.0 – Exterior of monitoring station	9
Figure 4.1 – Monitoring compound looking south	9
Figure 4.2 – Environ looking north1	.0
Figure 4.3 – Environ looking east1	.0
Figure 4.4 – Environ looking south1	.1
Figure 4.5 –Environ looking west	.1
Figure 4.6 – Outdoor Sample Inlet and Indoor manifold setup1	.2
Table 4.0 - Analytical Equipment in AMS 1021	.3
Table 5.0 - Support Equipment in AMS 1021	.3
Figure 5.0 – AMS 502 2.5 Year Wind Rose1	.4
Figure 6.0 – Plan View Sketch	.5

Network Background

The WBEA vision is to operate a state of the art monitoring system that meets the needs of residents and stakeholders in the Wood Buffalo Region. WBEA's mission is to monitor air quality and air quality related environmental indicators, to generate accurate and transparent information which enables stakeholders to make informed decisions.

Continuous ambient air quality and meteorological data are collected through a program administered by the WBEA's Ambient Air Technical Committee (AATC). The WBEA currently operates 20 continuous monitoring stations, each measuring from 5 to 15 continuous and intermittent air quality parameters. The continuously measured air quality parameters include SO2, H2S, TRS, O3, NOX, NO, NO2, NH3, CO, PM2.5, THC, NMHC, and CH4. All sites also measure temperature, wind speed, wind direction, ambient temperature and relative humidity. Selected sites measure barometric pressure, global radiation, precipitation, surface wetness, vertical wind speed, vertical temperature gradient, and visibility. The ambient air monitoring parameters for each station are summarized in Table 1.

The WBEA also maintains and operates several portable stations, equipped to measure SO2, H2S, O3, NOX, NO, NO2, NH3, PM2.5, THC, wind speed, wind direction, temperature and GPS location. The unit is available to WBEA member companies for private, facility-associated monitoring, or can be deployed for public monitoring in areas of special need or interest.

Since 1998 WBEA has maintained semi-continuous (intermittent) sampling for PM2.5, PM10, VOC and PAH. The sampling for intermittent monitoring has evolved with a better understanding of technology, analytical laboratory methods and sample deployment and collection methods. Intermittent samples in the WBEA ambient air monitoring network are taken every 6 days for a 24-hour period. The sampling schedule and procedures are consistent with Environment Canada's National Air Pollution Surveillance (NAPS) program. Since the planning process of the Joint Oil Sands Monitoring Plan, additional sampling has been added at selected sites and has been included in the list in table 1.0. Some of the additional monitoring includes speciated ionic analysis and dichotomous sampling for coarse and fine particulate on a three day sampling schedule.

						W	BE/	A A	M	BIE	NT	AI	RM	O	NIT(ÓR	INC	δN	ETV	NŌ	RK					_		_								
		WBEA Program	n - X																	Er	nhand	ed D	epos	ition	Prog	gram	- X									
					(CONT	INUC)US N	/ION	TOR	ED P A	PARAMETERS															INTEGRATED SAMPLING									
STATION NAME	STATION #	TYPE	\$O ₂	H ₂ S	TRS	O 3	NOx	NO	NO2	NH 3	ω	PM ₂₅	THC	NM HC	CH₄	PAH	BTEX	Calib	WS	WD	VWS	AT	RH	GR	SW	BP	PRECIP	EC/OC	SASS	Dichot	PMLO	PM ₂₅	voc	PAH	PRECIP	
Fort McKay - Bertha Ganter	1	Health	Х		X	X	X	X	X	X		X	X	Х	Х	X	X	X	X	X		X	X	Х	X		Х	X	X	X	Х	X	XX	XX	XX	
Mildred Lake	2	Compliance	Х	Х									Х					X	X	X		Х	X													
Lower Camp	3	Meteorological																	X	X	X	X	X													
Buffalo Viewpoint	4	Compliance	Х	X									Х					Х	X	X		Х	X													
Mannix	5	Compliance/Meteorological	Х	X									X					X	X	X	X	X	X									X		X	X	
Patricia McInnes	6	Health	Х		Х	Х	X	X	Х	X		X	Х	X	Х			Х	X	X		Х	X				Х				Х	X	X	Х	X	
Athabasca Valley	7	Health	Х		X	X	X	X	X		X	X	X	X	X			X	X	X		X	X			X					X	X	X	X	X	
Fort Chipewyan	8	Background/Health	Х			X	X	X	X			X						X	X	X		Х	X	Х	Х		Х									
Barge Landing	9	Attribution			X								X					X	X	X		X	X			Х							X			
Lower Camp B	11	Compliance	Х	Х									X					X	Х	X		Х	X									X		X	X	
Fort McKay South	13	Attribution	Х		X	X	X	X	X			X	X					X	X	X		X	X								X	X	X	X	X	
Anzac	14	Attribution	Х		Х	Х	Х	X	Х			X	Х	Х	Х			X	Х	X		Х	X	Х	Х		Х				Х	X	X	X		
ĆNRL - Horizon	15	Compliance	Х		X		X	X	X			X	X					X	X	X		X	X	X			X				X		X			
Shell Muskeg River	16	Compliance	Х				X	X	Х			X	Х					Х	X	X		Х	X			Х					Х					
Wapasu Creek	17	Compliance	Х	X		X	X	X	X			X	X					X	X	X	X	X	X				X			X				X	X	
Conklin	18	Background	Х		Х	Х	X	X	Х			X	Х	Х	Х	X		Х	X	X		Х	X	Х	Х		Х		X	X			X	X	X	
Suncor Firebag	19	Compliance	Х	X			X	X	X				X					X	X	X		X	X													
Brion Energy	20	Compliance	Х	X			X	X	Х				X					X	X	X		Х	X				X									
Cenovus Christina Lake	500	Porta ble-Compliance	Х	X		Х	X	X	Х			X						X	X	X		Х	X													
Stat Oil Leismer	501	Porta ble-Compliance	Х	X			X	X	Х									X	X	X		Х	X													
ConocoPhillips Surmont	502	Porta ble-Compliance	Х	X			X	X	X									X	X	X		X	X													
HEMP	104	Portable-Health			X								X	X	X			X	X	X		X	X													

Table 1.0 - Ambient Air monitoring Parameters in the WBEA Network

All the stations listed in table 1 are located throughout the Wood Buffalo Region. The map below shows the location of each station.

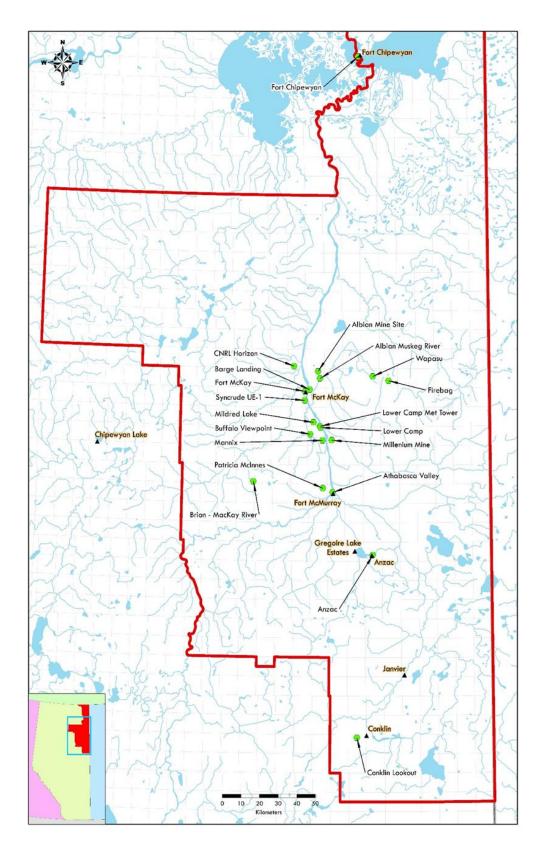


Figure 1.0 - WBEA Monitoring Network Sites

AMS 102 - Northern Lights Station Details

General Site Information

Northern Lights Portable AMS is currently collecting data at the ConocoPhillips Surmont site. The Northern Lights station contains analyzers and sensors that continuously measure SO₂, H₂S, NOx, Wind speed, Wind direction, External temperature, and Relative humidity.

Item	Description						
Station ID	AMS 502						
Station Name	Northern Lights						
General description	Located at CononoPhillips Surmont site in area 500 by the blowdown pond.						
Community	NA						
Station Coordinates	56° 11' 26.4984"	North	110° 56' 31.3974"	West			
Station elevation	634			Meters			
Station Address	NA						
Station Type	Portable-Complian	се					
Initial Commission Date	NA						
Area Land Use	Industrial – SAGD						
Angle of elevation to nearby buildings	0 degrees						
Average building height in area	0 meters						
Airflow Restrictions	North	no	East	No			
(yes/no)	South	No	West	No			
Nearest Tree	Distance	NA	Height	NA			
Sample Manifold Type	Glass		•				
Meteorological Tower Information	Height Type Position	10 meters Aluma crank-up tower Attached to North end of monitoring shelter					
Station Install Date	NA						
Station Origin	NA						
Site Preparation	Level gravel pad						

Table 2.0 – General Site Information

Localized Sources

Туре		Distan	ce		Description		
Blowdown pond 50 r		50 m v) m west		Pond used to store water that accumulates during normal plant operations.		
Steam generation boilers		150 m northwest			Boilers used to produce steam for SAGD process.		
Name	Туре	-	Traffic Volume	Dista	nce (m)	Description	
Roadway	Dirt/gravel road		Medium	20		Used by workers to access many areas of the plant.	

Table 3.0 – Local Source Information

Area Topographic Map

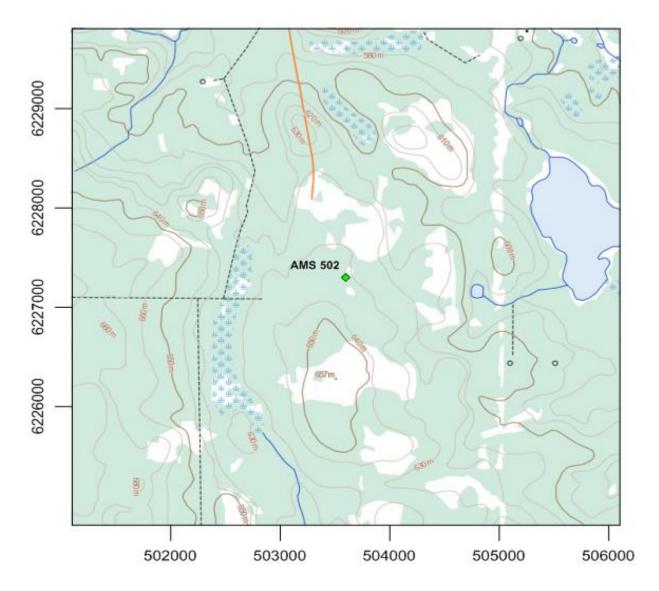


Figure 2.0 – Area Topographic map showing AMS 102 – Northern Lights Station

Aerial Photo

Figure 3.0 – Aerial photo showing AMS 102 – Northern Lights Station

Site photos

The following show photos of the station surroundings as well as the exterior and interior of the station itself.

Figure 4.0 – Exterior of monitoring station

Figure 4.1 – Monitoring compound looking south

Figure 4.2 - Environ looking north

Figure 4.3 – Environ looking east

Figure 4.4 – Environ looking south

Figure 4.5 - Environ looking west



Figure 4.6 – Outdoor Sample Inlet and Indoor manifold setup

Equipment Inventory

Parameter Measured	Maka	Madal	Serial Number	Damaa	Detection Dringinle	Sampling Height (m)		
Para	meter weasured	Make	Model	Serial Number	Range	Detection Principle	Ground	Shelter
SO2	Sulfur Dioxide	Teledyne API	T100	598	0-1000ppb	Pulsed Fluorescence	4	1
H2S	Hydrogen Sulfide	Teledyne API	T101	197	0-100ppb	Pulsed Fluorescence	4	1
NOx	NO/NO2/NOx	Thermo Instruments	42i	1218153356	0-1000ppb	Chemiluminesense	4	1
AT/RH	Ambient temp and relative humidity.	Vaisala	HMP155	J3310031	Temp: -80 - +60 C RH: 0-100%	Thermometer. Measurement is based on measuring voltage across a capacitive film polymer sensor.	4	
WS	Wind speed	Met One	010C-1	G3212	0-80kph	Chopped optical	10	
WD	Wind direction	Met One	020C-1	G3858	0-360 degrees	Resistive (potentiometer)	10	

Table 4.0 - Analytical Equipment in AMS 102

Name	Description	Make	Model	Serial Number
Datalogger	Datalogger	Campbell Scientific	CR3000	9035
ZAG	Zero Air Generator	Teledyne API	M701	196
HVAC	Heating and air conditioning system. Wall mount unit	BARD	NA	NA
Shelter / Building	Air monitoring portable	ITB	NA	ITB1315940
Gas Dilution Calibrator	Uses Mass Flow Controllers to dilute and deliver calibration gasses at concentrations required for multipoint instrument calibrations, troubleshooting and daily reference points.	Teledyne API	T700	622

Table 5.0 - Support Equipment in AMS 102

Wind Rose

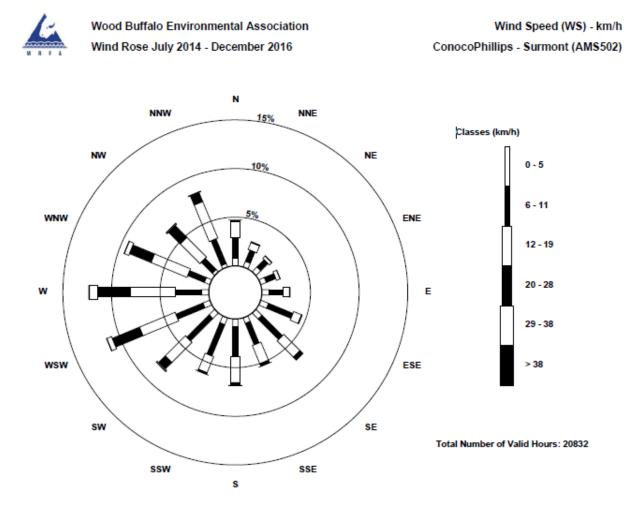


Figure 5.0 – AMS 502 2.5 Year Wind Rose

Figure 6.0 – Plan view sketch showing a 500m radius around Northern Light – ConocoPhillips station